Extract MCMC samples estimated by metropolis.krige()
mcmc.samples(object, as.matrix, as.data.frame, ...)# S3 method for krige
mcmc.samples(object, as.matrix = !as.data.frame, as.data.frame = FALSE, ...)
# S3 method for summary.krige
mcmc.samples(object, as.matrix = !as.data.frame, as.data.frame = FALSE, ...)
# S3 method for krige
as.matrix(x, ...)
# S3 method for summary.krige
as.matrix(x, ...)
# S3 method for krige
as.data.frame(x, ...)
# S3 method for summary.krige
as.data.frame(x, ...)
A krige
or summary.krige
object from the metropolis.krige
function.
Logical values indicating if the output format should be a matrix. Defaults to TRUE
.
Logical values indicating if the output format should be a
data.frame. Defaults to FALSE
.
Additional arguments passed to as.matrix
or as.data.frame
methods.
A krige
or summary.krige
object for as.matrix
and as.data.frame
methods.
A summary.krige
list object.
The function extracts the MCMC samples from the a krige
or summary.krige
object from the metropolis.krige
function. Users can define the output by using as.matrix
or as.data.frame
.
# NOT RUN {
# Summarize Data
summary(ContrivedData)
# Initial OLS model
contrived.ols<-lm(y~x.1+x.2,data=ContrivedData)
# summary(contrived.ols)
# Set seed
set.seed(1241060320)
M <- 100
#M<-10000
contrived.run <- metropolis.krige(y ~ x.1 + x.2, coords = c("s.1","s.2"),
data = ContrivedData, n.iter = M, n.burnin = 20, range.tol = 0.05)
contrived.run.mat <- mcmc.samples(contrived.run)
### Alternatively, use generic methods
contrived.run.mat <- as.matrix(contrived.run)
contrived.run.df <- as.data.frame(contrived.run)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab