Hlscv(x, Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm", trunc)
Hlscv.diag(x, Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm", trunc)
hlscv(x, binned=TRUE, bgridsize, amise=FALSE, deriv.order=0)
Hucv(...)
Hucv.diag(...)
hucv(...)amise=TRUE then the minimal LSCV value is returned too.
hlscv is the univariate LSCV
selector of Bowman (1984) and Rudemo (1982). Hlscv is a
multivariate generalisation of this. Use Hlscv for full
bandwidth matrices and Hlscv.diag for diagonal bandwidth matrices.
Hucv, Hucv.diag and hucv are aliases with UCV
unbiased cross validation instead of LSCV.
Truncation of the parameter space is usually required for the LSCV selector,
for r > 0, to find a reasonable solution to the numerical optimisation.
If a candidate matrix H is
such that det(H) is not in [1/trunc, trunc]*det(H0) or
abs(LSCV(H)) > trunc*abs(LSCV0) then the LSCV(H) is reset to LSCV0 where
H0=Hns(x) and LSCV0=LSCV(H0). For details about the advanced options for binned,Hstart,
see Hpi.
Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics. 9, 65-78.
Hbcv, Hpi, Hscvlibrary(MASS)
data(forbes)
Hlscv(forbes)
hlscv(forbes$bp)
Run the code above in your browser using DataLab