Learn R Programming

ks (version 1.10.4)

plot.kda: Plot for kernel discriminant analysis

Description

Plot for kernel discriminant analysis for 1- to 3-dimensional data.

Usage

"plot"(x, y, y.group, ...)

Arguments

x
object of class kda (output from kda)
y
matrix of test data points
y.group
vector of group labels for test data points
...
other graphics parameters:
rugsize
height of rug-like plot for partition classes (1-d)

prior.prob
vector of prior probabilities

col.part
vector of colours for partition classes (1-d, 2-d)

and those used in plot.kde

Value

Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to RGL window.

Details

For kda objects, the function headers for the different dimensional data are
  ## univariate
  plot(x, y, y.group, prior.prob=NULL, xlim, ylim, xlab="x",
     ylab="Weighted density function", drawpoints=FALSE, col, col.part,
     col.pt, lty, jitter=TRUE, rugsize, ...)

## bivariate plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75), abs.cont, approx.cont=FALSE, xlim, ylim, xlab, ylab, drawpoints=FALSE, drawlabels=TRUE, col, col.part, col.pt, ...)

## trivariate plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75), abs.cont, approx.cont=FALSE, colors, alphavec, xlab, ylab, zlab, drawpoints=FALSE, size=3, col.pt="blue", ...)

See Also

kda, kde

Examples

Run this code
library(MASS)
data(iris)

## univariate example
ir <- iris[,1]
ir.gr <- iris[,5]
kda.fhat <- kda(x=ir, x.group=ir.gr, xmin=3, xmax=9)
plot(kda.fhat, xlab="Sepal length")

## bivariate example
ir <- iris[,1:2]
ir.gr <- iris[,5]
kda.fhat <- kda(x=ir, x.group=ir.gr)
plot(kda.fhat)

## trivariate example
ir <- iris[,1:3]
ir.gr <- iris[,5] 
H <- Hkda(x=ir, x.group=ir.gr, bw="plugin", pilot="dscalar")
kda.fhat <- kda(x=ir, x.group=ir.gr, Hs=H)
plot(kda.fhat, drawpoints=TRUE, col.pt=c(2,3,4))
   ## colour=species, transparency=density heights

Run the code above in your browser using DataLab