Plot for kernel density estimate for 1- to 3-dimensional data.
# S3 method for kde
plot(x, ...)
an object of class kde
(output from kde
)
other graphics parameters:
display
type of display, "slice" for contour plot, "persp" for perspective plot, "image" for image plot, "filled.contour" for filled contour plot (1st form), "filled.contour2" (2nd form) (2-d)
cont
vector of percentages for contour level curves
abs.cont
vector of absolute density estimate heights for contour level curves
approx.cont
flag to compute approximate contour levels. Default is FALSE.
col
plotting colour for density estimate (1-d, 2-d)
col.cont
plotting colour for contours
col.fun
plotting colour function for contours
col.pt
plotting colour for data points
colors
vector of colours for each contour (3-d)
jitter
flag to jitter rug plot (1-d). Default is TRUE.
lwd.fc
line width for filled contours (2-d)
xlim,ylim,zlim
axes limits
xlab,ylab,zlab
axes labels
add
flag to add to current plot. Default is FALSE.
theta,phi,d,border
graphics parameters for perspective plots (2-d)
drawpoints
flag to draw data points on density estimate. Default is FALSE.
drawlabels
flag to draw contour labels (2-d). Default is TRUE.
alpha
transparency value of plotting symbol (3-d)
alphavec
vector of transparency values for contours (3-d)
size
size of plotting symbol (3-d).
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to RGL window.
For kde
objects, the function headers for the different dimensional data are
## univariate plot(fhat, xlab, ylab="Density function", add=FALSE, drawpoints=FALSE, col.pt="blue", col.cont=1, cont.lwd=1, jitter=FALSE, cont, abs.cont, approx.cont=TRUE, ...)## bivariate plot(fhat, display="slice", cont=c(25,50,75), abs.cont, approx.cont=TRUE, xlab, ylab, zlab="Density function", cex=1, pch=1, add=FALSE, drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, col.pt="blue", col, col.fun, lwd=1, border=1, thin=3, lwd.fc=5, ...)
## trivariate plot(fhat, cont=c(25,50,75), abs.cont, approx.cont=FALSE, colors, add=FALSE, drawpoints=FALSE, alpha, alphavec, xlab, ylab, zlab, size=3, col.pt="blue", ...)
The 1-d plot is a standard plot of a 1-d curve. If
drawpoints=TRUE
then a rug plot is added. If cont
is specified,
the horizontal line on the x-axis indicates the cont
% highest
density level set.
There are different types of plotting displays for 2-d data available,
controlled by the display
parameter.
(a) If display="slice"
then a slice/contour plot
is generated using contour
.
(b) If display
is "filled.contour"
or "filled.contour2"
then a filled contour plot is generated.
The default contours are at 25%, 50%, 75% or
cont=c(25,50,75)
which are upper percentages of
highest density regions.
(c) If display="persp"
then a perspective/wire-frame plot
is generated. The default z-axis limits zlim
are the default
from the usual persp
command.
(d) If display="image"
then an image plot
is generated. Default colours are the default from the usual
image
command.
For 3-dimensional data, the interactive plot is a series of nested
3-d contours.
The default contours are cont=c(25,50,75)
. The
default colors
are heat.colors
and the
default opacity alphavec
ranges from 0.1 to 0.5.
To specify contours, either one of cont
or abs.cont
is required. cont
specifies upper percentages which
correspond to probability contour regions. If abs.cont
is set
to particular values, then contours at these levels are drawn.
This second option is useful for plotting
multiple density estimates with common contour levels. See
contourLevels
for details on computing contour levels.
If approx=FALSE
, then the exact KDE is computed. Otherwise
it is interpolated from an existing KDE grid. This can dramatically
reduce computation time for large data sets.
# NOT RUN {
library(MASS)
data(iris)
## univariate example
fhat <- kde(x=iris[,2])
plot(fhat, cont=50, col.cont="blue", cont.lwd=2, xlab="Sepal length")
## bivariate example
fhat <- kde(x=iris[,2:3])
plot(fhat, display="filled.contour2", cont=seq(10,90,by=10))
plot(fhat, display="persp", thin=3, border=1, col="white")
# }
# NOT RUN {
## trivariate example
fhat <- kde(x=iris[,2:4])
plot(fhat, drawpoints=TRUE)
# }
Run the code above in your browser using DataLab