Learn R Programming

ks (version 1.4.4)

plot.kde: Kernel density estimate plot for 1- to 3-dimensional data

Description

Kernel density estimate plot for 1- to 3-dimensional data.

Usage

## univariate
## S3 method for class 'kde':
plot(fhat, xlab, ylab="Density function", add=FALSE,
  ptcol="blue", lcol="black", drawpoints=TRUE, ...)

## bivariate ## S3 method for class 'kde': plot(fhat, display="slice", cont=c(25,50,75), ncont=NULL, cex=0.7, xlab, ylab, zlab="Density function", theta=-30, phi=40, d=4, add=FALSE, drawlabels=TRUE, pch, ptcol="blue", lcol="black", ...)

## trivariate ## S3 method for class 'kde': plot(fhat, cont=c(25,50,75), colors, alphavec, size=3, ptcol="blue", add=FALSE, origin=c(0,0,0), endpts, xlab, ylab, zlab, drawpoints=TRUE, ...)

Arguments

Value

  • Plot of 1-d and 2-d kernel density estimates are sent to graphics window. Plot for 3-d is generated by the misc3d and rgl libraries and is sent to RGL window.

synopsis

## S3 method for class 'kde': plot(x, drawpoints=TRUE, ...)

Details

-- The 1-d plot is a standard plot of a 1-d curve. If drawpoints=TRUE then a rug plot is added. -- There are three types of plotting displays for 2-d data available, controlled by the display parameter.

If display="slice" then a slice/contour plot is generated using contour. The default contours are at 25%, 50%, 75% or cont=c(25,50,75). The user can also set the number of contour level curves by changing the value set to ncont. See examples below. If display="persp" then a perspective/wire-frame plot is generated. The default z-axis limits zlim are determined by the range of the z values i.e. default from the usual persp command. If display="image" then an image plot is generated. The colours are the default from the usual image command.

Note the drawpoints argument fails with 2-d plots. If the data points shouldn't be added to the plot, set cex=0.

-- For 3-dimensional data, the interactive plot is a series of nested 3-d contours. The default contours are cont=c(25,50), the default colors are heat.colors and the default opacity alphavec ranges from 0.1 to 0.5. origin is the point where the three axes meet. endpts is the vector of the maximum axis values to be plotted. Default endpts is the maxima for the plotting grid from x.

References

Bowman, A.W. & Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis. Clarendon Press. Oxford. Simonoff, J. S., (1996) Smoothing Methods in Statistics. Springer-Verlag. New York.

See Also

kde

Examples

Run this code
## univariate example
x <- rnorm.mixt(n=100, mus=1, sigmas=1, props=1)
fhat <- kde(x, h=sqrt(0.09))  
plot(fhat)


## bivariate example
data(unicef)
H.scv <- Hscv(unicef)
fhat <- kde(unicef, H=H.scv)

layout(rbind(c(1,2), c(3,4)))
plot(fhat, display="slice", cont=seq(10,90, by=20), cex=0.3)
plot(fhat, display="slice", ncont=8, drawpoints=FALSE, drawlabels=FALSE)
plot(fhat, display="persp")
plot(fhat, display="image", col=rev(heat.colors(100)))
layout(1)

## trivariate example
mus <- rbind(c(0,0,0), c(-1,1,1))
Sigma <- matrix(c(1, 0.7, 0.7, 0.7, 1, 0.7, 0.7, 0.7, 1), nr=3, nc=3) 
Sigmas <- rbind(Sigma, Sigma)
props <- c(1/2, 1/2)
x <- rmvnorm.mixt(n=100, mus=mus, Sigmas=Sigmas, props=props)
H.pi <- Hpi(x)
fhat <- kde(x, H=H.pi)  
plot(fhat, origin=c(-3,-3,-3))

Run the code above in your browser using DataLab