Usage
## univariate
## S3 method for class 'kda.kde':
plot(x, y, y.group, prior.prob=NULL, xlim, ylim,
xlab="x", ylab="Weighted density function", drawpoints=FALSE,
col, ptcol, jitter=TRUE, ...)## bivariate
## S3 method for class 'kda.kde':
plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75),
abs.cont, approx.cont=FALSE, xlim, ylim, xlab, ylab, drawpoints=FALSE,
drawlabels=TRUE, col, partcol, ptcol, ...)
## trivariate
## S3 method for class 'kda.kde':
plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75),
abs.cont, approx.cont=FALSE, colors, alphavec, xlab, ylab, zlab,
drawpoints=FALSE, size=3, ptcol="blue", ...)
Arguments
x
an object of class kda.kde
(output from
kda.kde
) y
matrix of test data points
y.group
vector of group labels for test data points
prior.prob
vector of prior probabilities
cont
vector of percentages for contour
level curves
abs.cont
vector of absolute density estimate heights for contour
level curves
approx.cont
flag to compute approximate contour levels
xlab,ylab,zlab
axes labels
drawpoints
if TRUE then draw data points
drawlabels
if TRUE then draw contour labels (2-d plot)
jitter
if TRUE then jitter rug plot (1-d plot)
ptcol
vector of colours for data points of each group
partcol
vector of colours for partition classes (1-d, 2-d plot)
col
vector of colours for density estimates (1-d, 2-d plot)
colors
vector of colours for contours of density estimates (3-d plot)
alphavec
vector of transparency values - one for each contour
(3-d plot)
size
size of plotting symbol (3-d plot)
...
other graphics parameters