Learn R Programming

ks (version 1.6.13)

plot.kda.kde: Kernel discriminant analysis plot for 1- to 3-dimensional data

Description

Kernel discriminant analysis plot for 1- to 3-dimensional data.

Usage

## univariate
## S3 method for class 'kda.kde':
plot(x, y, y.group, prior.prob=NULL, xlim, ylim,
    xlab="x", ylab="Weighted density function", drawpoints=FALSE,
    col, ptcol, jitter=TRUE, ...)

## bivariate ## S3 method for class 'kda.kde': plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75), abs.cont, approx.cont=FALSE, xlim, ylim, xlab, ylab, drawpoints=FALSE, drawlabels=TRUE, col, partcol, ptcol, ...)

## trivariate ## S3 method for class 'kda.kde': plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75), abs.cont, approx.cont=FALSE, colors, alphavec, xlab, ylab, zlab, drawpoints=FALSE, size=3, ptcol="blue", ...)

Arguments

x
an object of class kda.kde (output from kda.kde)
y
matrix of test data points
y.group
vector of group labels for test data points
prior.prob
vector of prior probabilities
cont
vector of percentages for contour level curves
abs.cont
vector of absolute density estimate heights for contour level curves
approx.cont
flag to compute approximate contour levels
xlim,ylim
axes limits
xlab,ylab,zlab
axes labels
drawpoints
if TRUE then draw data points
drawlabels
if TRUE then draw contour labels (2-d plot)
jitter
if TRUE then jitter rug plot (1-d plot)
ptcol
vector of colours for data points of each group
partcol
vector of colours for partition classes (1-d, 2-d plot)
col
vector of colours for density estimates (1-d, 2-d plot)
colors
vector of colours for contours of density estimates (3-d plot)
alphavec
vector of transparency values - one for each contour (3-d plot)
size
size of plotting symbol (3-d plot)
...
other graphics parameters

Value

  • Plot of 1-d and 2-d density estimates for discriminant analysis is sent to graphics window. Plot for 3-d is sent to RGL window.

synopsis

## S3 method for class 'kda.kde': plot(x, y, y.group, drawpoints=FALSE, ...)

Details

-- For 1-d plots: The partition induced by the discriminant analysis is plotted as rug plot (with the ticks inside the axes). If drawpoints=TRUE then the data points are plotted as a rug plot with the ticks outside the axes, their colour is controlled by ptcol. -- For 2-d plots: The partition classes are displayed using the colours in partcol. The default contours of the density estimate are 25%, 50%, 75% or cont=c(25,50,75) for highest density regions. See plot.kde for more details. -- For 3-d plots: Default contours are cont=c(25,50,75) for highest density regions. See plot.kde for more details. The colour of each group is colors. The transparency of each contour (within each group) is alphavec. Default range is 0.1 to 0.5.

-- If prior.prob is set to a particular value then this is used. The default is NULL which means that the sample proportions are used.

If y and y.group are missing then the training data points are plotted. Otherwise, the test data y are plotted.

References

Bowman, A.W. & Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis. Clarendon Press. Oxford. Simonoff, J. S., (1996) Smoothing Methods in Statistics. Springer-Verlag. New York.

See Also

kda.kde, kda

Examples

Run this code
library(MASS)
data(iris)

## univariate example
ir <- iris[,1]
ir.gr <- iris[,5]
hs <- hkda(x=ir, x.gr=ir.gr)
kda.fhat <- kda.kde(ir, ir.gr, hs=hs, xmin=3, xmax=9)
plot(kda.fhat, xlab="Sepal length")

## bivariate example
ir <- iris[,1:2]
ir.gr <- iris[,5]
H <- Hkda(ir, ir.gr, bw="plugin", pre="scale")
kda.fhat <- kda.kde(ir, ir.gr, Hs=H)
plot(kda.fhat, cont=0, partcol=4:6)
plot(kda.fhat, drawlabels=FALSE, drawpoints=TRUE)

## trivariate example
## colour indicates species, transparency indicates density heights
ir <- iris[,1:3]
ir.gr <- iris[,5] 
H <- Hkda(ir, ir.gr, bw="plugin", pre="scale", bgridsize=rep(31,3))
kda.fhat <- kda.kde(ir, ir.gr, Hs=H, compute.cont=TRUE)
plot(kda.fhat)

Run the code above in your browser using DataLab