Learn R Programming

ks (version 1.8.11)

Hamise.mixt: Squared error bandwidth matrix selectors for normal mixture densities

Description

The global errors ISE (Integrated Squared Error), MISE (Mean Integrated Squared Error) and the AMISE (Asymptotic Mean Integrated Squared Error) for 1- to 6-dimensional data. Normal mixture densities have closed form expressions for the MISE and AMISE. So in these cases, we can numerically minimise these criteria to find MISE- and AMISE-optimal matrices.

Usage

Hamise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hmise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hamise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hmise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0)
hamise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)
hmise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)

amise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0) ise.mixt(x, H, mus, Sigmas, props, h, sigmas, deriv.order=0, binned=FALSE, bgridsize) mise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)

Arguments

mus
(stacked) matrix of mean vectors (>1-d), vector of means (1-d)
Sigmas,sigmas
(stacked) matrix of variance matrices (>1-d), vector of standard deviations (1-d)
props
vector of mixing proportions
samp
sample size
Hstart,hstart
initial bandwidth (matrix), used in numerical optimisation
deriv.order
derivative order
x
matrix of data values
H,h
bandwidth (matrix)
binned
flag for binned kernel estimation. Default is FALSE.
bgridsize
vector of binning grid sizes

Value

  • Full MISE- or AMISE-optimal bandwidth matrix. ISE, MISE or AMISE value.

Details

ISE is a random variable that depends on the data x. MISE and AMISE are non-random and don't depend on the data. For normal mixture densities, ISE, MISE and AMISE have exact formulas for all dimensions. See Chacon, Duong & Wand (2011).

References

Chacon J.E., Duong, T. & Wand, M.P. (2011). Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica. 21, 807-840.

Examples

Run this code
x <- rmvnorm.mixt(100)
Hns(x, deriv.order=1)
Hamise.mixt(samp=nrow(x), mus=rep(0,2), var(x), props=1, deriv.order=1)

Run the code above in your browser using DataLab