Hamise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hmise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hamise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0)
Hmise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0)
hamise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)
hmise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)amise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)
ise.mixt(x, H, mus, Sigmas, props, h, sigmas, deriv.order=0, binned=FALSE,
bgridsize)
mise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)
x
. MISE and AMISE are non-random and don't
depend on the data. For normal mixture densities, ISE, MISE and AMISE
have exact formulas for all dimensions. See Chacon, Duong & Wand (2011).x <- rmvnorm.mixt(100)
Hns(x, deriv.order=1)
Hamise.mixt(samp=nrow(x), mus=rep(0,2), var(x), props=1, deriv.order=1)
Run the code above in your browser using DataLab