kdde(x, H, h, deriv.order=0, gridsize, gridtype, xmin, xmax, supp=3.7,
eval.points, binned=FALSE, bgridsize, positive=FALSE,
adj.positive, w, deriv.vec=TRUE, verbose=FALSE)-supp, supp]positive=TRUE KDE is carried out on log(x +
adj.positive). Default is the minimum of x.kdde:eval.pointseval.points is not specified, then the
density derivative estimate is computed over a grid
defined by gridsize (if binned=FALSE) or
by bgridsize (if binned=TRUE). For d = 1, 2, 3, 4,
and if eval.points is specified, then the
density derivative estimate is computed exactly at eval.points.
For d > 4, the kernel density derivative estimate is computed exactly
and eval.points must be specified.
The default xmin is min(x) - Hmax*supp and xmax
is max(x) + Hmax*supp where Hmax is the maximum of the
diagonal elements of H.The default weights w is a vector of all ones.
For each partial derivative, for grid estimation, the estimate is a list whose elements
correspond to the partial derivative indices in the rows of deriv.ind.
For points estimation, the estimate is a matrix whose columns correspond to
rows of deriv.ind.
kde## univariate example
x <- rnorm.mixt(n=100, mus=1, sigmas=1, props=1)
fhat2 <- kdde(x=x, h=hpi(x), deriv.order=2) ## d^2 f/dx^2
## bivariate example
data(unicef)
H.scv <- Hscv(x=unicef)
fhat1 <- kdde(x=unicef, H=H.scv, deriv.order=1) ## gradient vectorRun the code above in your browser using DataLab