
Hlscv(x, Hstart, binned=FALSE, bgridsize, amise=FALSE,
deriv.order=0, verbose=FALSE, optim.fun="nlm")
Hlscv.diag(x, Hstart, binned=FALSE, bgridsize, amise=FALSE,
deriv.order=0, verbose=FALSE, optim.fun="nlm")
hlscv(x, binned=TRUE, bgridsize, amise=FALSE, deriv.order=0)
amise=TRUE
then the minimal LSCV value is returned too.hlscv
is the univariate SCV
selector of Bowman (1984) and Rudemo (1982). Hlscv
is a
multivariate generalisation of this. Use Hlscv
for full bandwidth matrices and Hlscv.diag
for diagonal bandwidth matrices. For details about the advanced options for binned,Hstart
,
see Hpi
.
Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics. 9, 65-78.
Hbcv
, Hpi
, Hscv
library(MASS)
data(forbes)
Hlscv(forbes)
Hlscv.diag(forbes, binned=TRUE)
hlscv(forbes$bp)
Run the code above in your browser using DataLab