--For kernel density estimation, kde
computes
$$\hat{f}(\bold{x}; \bold{{\rm H}}) = n^{-1} \sum_{i=1}^n K_{\bold{{\rm H}}} (\bold{x} - \bold{X}_i).$$
For display, its plot
method calls plot.kde
.
--For kernel discriminant analysis, kda.kde
computes density estimates for each the
groups in the training data, and the discriminant surface.
Its plot
method is plot.kda.kde
. The wrapper function Hkda
computes
bandwidth matrices for each group in the training data, by calling the above selectors.
--For kernel density derivative estimation, the main function is kdde
$$\widehat{{\sf D}^{\otimes r}f}(\bold{x}; \bold{{\rm H}}) = n^{-1} \sum_{i=1}^n {\sf D}^{\otimes r}K_{\bold{{\rm H}}} (\bold{x} - \bold{X}_i).$$
--There are several varieties of bandwidth matrix selectors
hpi
(1-d);Hpi
,Hpi.diag
(2- to 6-d)
hlscv
(1-d);Hlscv
,Hlscv.diag
(2- to 6-d)
Hbcv
,Hbcv.diag
(2- to 6-d)
hscv
(1-d);Hscv
,Hscv.diag
(2- to 6-d)
hmise.mixt
,hamise.mixt
(1-d); andHmise.mixt
,Hamise.mixt
,Hmise.mixt.diag
,Hamise.mixt.diag
(2- to 6-d). --For kernel functional estimation, kfe
computes the $r$-th order integrated density functional
$$\hat{{\bold \psi}}_r (\bold{{\rm H}}) = n^{-2} \sum_{i=1}^n \sum_{j=1}^n {\sf D}^{\otimes r}K_{\bold{{\rm H}}}(\bold{X}_i-\bold{X}_j).$$ The plug-in selector is Hpi.kfe
.
--Binned kernel estimation is available for d = 1, 2, 3, 4. This makes kernel estimators
feasible for large samples.
--For an overview of this package with 2-d density estimation, see
vignette("kde")
.
Scott, D.W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, New York.
Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London.
Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer-Verlag. New York.
Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall/CRC, London.
sm
, KernSmooth