kfe(x, G, deriv.order, inc=1, binned=FALSE, bin.par, bgridsize, deriv.vec=TRUE,
add.index=TRUE, verbose=FALSE)
Hpi.kfe(x, nstage=2, pilot, pre="sphere", Hstart, binned=FALSE,
bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm")
Hpi.diag.kfe(x, nstage=2, pilot, pre="scale", Hstart, binned=FALSE,
bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm")
hpi.kfe(x, nstage=2, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0)
pre.scale
, "sphere" = pre.sphere
binning
Hpi.kfe
is the optimal plug-in bandwidth for $r$-th order kernel functional estimator
based on the unconstrained pilot selectors of Chacon & Duong (2010).
hpi.kfe
is the 1-d equivalent, using the formulas from
Wand & Jones (1995, p.70). kfe
does not usually need to be called explicitly by the user.
kde.test