rWAR: Random matrix generation from first-order autoregressive Wishart process
Description
Given a matrix of coefficients M and a covariance matrix Sigma,
simulate n random matrices from a first-order autoregressive Wishart process
by simulating from cross-products of vector autoregressions
Usage
rWAR(n, M, Sigma, K = 1L, order = 1L, burnin = 25L)
Value
an array of size d by d by n containing the samples
Arguments
n
sample size
M
matrix of autoregressive coefficients
Sigma
covariance matrix
K
integer, degrees of freedom
order
order of autoregressive process, only 1 is supported at current.
burnin
number of iterations discarded
References
C. Gourieroux, J. Jasiak, and R. Sufana (2009). The Wishart Autoregressive process of multivariate stochastic volatility, Journal of Econometrics, 150(2), 167-181, <doi:10.1016/j.jeconom.2008.12.016>.