Learn R Programming

kulife (version 0.1-14)

qpcr: Gene expression from real-time quantitative PCR

Description

Gene expression levels from real-time quantitative polymerase chain reaction (qPCR) experiments on two different plant lines. Each line was used for 7 experiments each with 45 cycles.

Usage

data(qpcr)

Arguments

Format

A data frame with 630 observations on the following 4 variables.
flour numeric
Fluorescence level line
factor Plant lines rnt (mutant) and wt (wildtype)
cycle numeric
Cycle number for the experiment transcript
factor Transcript used for the different runs

Source

Data provided by Kirsten Jorgensen . Added by Claus Ekstrom

References

Morant, M. et al. (2010). Metabolomic, Transcriptional, Hormonal and Signaling Cross-Talk in Superroot2. Molecular Plant. 3, p.192--211.

Examples

Run this code
data(qpcr)

#
# Analyze a single run for the wt line, transcript 1
#
run1 <- subset(qpcr, transcript==1 & line=="wt")

model <- nls(flour ~ fmax/(1+exp(-(cycle-c)/b))+fb, 
             start=list(c=25, b=1, fmax=100, fb=0), data=run1)

print(model)

plot(run1$cycle, run1$flour, xlab="Cycle", ylab="Fluorescence")
lines(run1$cycle, predict(model))

Run the code above in your browser using DataLab