powered by
Fit variogram using point data
# S4 method for formula,data.frame,SpatialPixelsDataFrame fit.vgmModel( formulaString.vgm, rmatrix, predictionDomain, cov.model = "exponential", dimensions = list("2D", "3D", "2D+T", "3D+T"), lambda = 0.5, psiR = NULL, subsample = nrow(rmatrix), ini.var, ini.range, fix.psiA = FALSE, fix.psiR = FALSE, ... )
formula.
data.frame with coordinates and values of covariates.
SpatialPixelsDataFrame.
covariance model type used by the geoR package.
optional 2D or 3D dimensions.
transformation value used by the geoR package.
range parameter used by the geoR package.
number of subset of original samples.
initial variance (sill) used by the geoR package.
initial range parameter used by the geoR package.
setting used by the geoR package.
optional arguments to pass to the geoR package.
Fitted variogram model
# NOT RUN { library("geoR") library(rgdal) demo(meuse, echo=FALSE) vgm = fit.vgmModel(zinc~dist, as.data.frame(meuse), meuse.grid["dist"], lambda=1) plot(variog(vgm$geodata)) lines(vgm$vgm) # }
Run the code above in your browser using DataLab