Predict using spLearner at new locations
# S3 method for spLearner
predict(
object,
predictionLocations,
model.error = TRUE,
error.type = c("forestError", "weighted.sd", "quantreg", "interval")[1],
t.prob = 1/3,
w,
quantiles = c((1 - 0.682)/2, 1 - (1 - 0.682)/2),
n.cores = parallel::detectCores(),
what = c("mspe", "bias", "interval"),
...
)of type spLearner.
SpatialPixelsDataFrame with values of all features.
Logical specify if prediction errors should be derived.
Specify how should be the prediction error be derived.
Threshold probability for significant learners; only applyies for meta-learners based on lm model.
optional weights vector.
Lower and upper quantiles for quantreg forest (0.159 and 0.841 for 1 standard deviation).
Number of cores to use (for parallel computation in ranger).
A vector of characters indicating what estimates are desired for the quantForestError.
optional parameters.
Object of class SpatialPixelsDataFrame with predictions and model error.