if (FALSE) {
#### Spatially-implicit simulation with 2 patches (S + R) during 3 years ####
## Simulation parameters
time_param <- list(Nyears=3, nTSpY=120)
Npoly=2
Npatho=2
area <- c(100000, 100000)
cultivars <- as.list(rbind(loadCultivar(name="Susceptible", type="growingHost")
, loadCultivar(name="Resistant", type="growingHost")))
names(cultivars)[names(cultivars)=="cultivarName"] <- "name"
cultivars <- c(cultivars, list(sigmoid_kappa_host=0.002, sigmoid_sigma_host=1.001,
sigmoid_plateau_host=1, cultivars_genes_list=list(numeric(0),0)))
rotation <- data.frame(year_1=c(0,1), year_2=c(0,1), year_3=c(0,1), year_4=c(0,1))
croptypes_cultivars_prop <- data.frame(croptypeID=c(0,1), cultivarID=c(0,1), proportion=c(1,1))
genes <- as.list(loadGene(name="MG", type="majorGene"))
## run simulation
model_landsepi(seed=1,
time_param = time_param,
basic_patho_param = loadPathogen(disease = "rust"),
inits = list(pI0=0.01), area_vector = area,
dispersal = list(disp_patho_clonal=c(0.99,0.01,0.01,0.99),
disp_patho_sex=c(1,0,0,1),
disp_host=c(1,0,0,1)),
rotation_matrix = as.matrix(rotation),
croptypes_cultivars_prop = as.matrix(croptypes_cultivars_prop),
cultivars_param = cultivars, genes_param = genes)
## Compute outputs
eco_param <- list(yield_perHa = cbind(H = as.numeric(cultivars$yield_H),
L = as.numeric(cultivars$yield_L),
I = as.numeric(cultivars$yield_I),
R = as.numeric(cultivars$yield_R)),
planting_cost_perHa = as.numeric(cultivars$planting_cost),
market_value = as.numeric(cultivars$market_value))
evol_res <- evol_output(, time_param, Npoly, cultivars, genes)
epid_output(, time_param, Npatho, area, rotation
, croptypes_cultivars_prop, cultivars, eco_param)
#### 1-year simulation of a rust epidemic in pure susceptible crop in a single 1-km2 patch ####
## Simulation and pathogen parameters
time_param <- list(Nyears=1, nTSpY=120)
area <- c(1E6)
basic_patho_param = loadPathogen(disease = "rust")
## croptypes, cultivars and genes
rotation <- data.frame(year_1=c(0), year_2=c(0))
croptypes_cultivars_prop <- data.frame(croptypeID=c(0), cultivarID=c(0), proportion=c(1))
cultivars <- as.list(rbind(loadCultivar(name="Susceptible", type="growingHost")))
names(cultivars)[names(cultivars)=="cultivarName"] <- "name"
yield0 <- cultivars$yield_H + as.numeric(cultivars$yield_H==0)
cultivars <- c(cultivars, list(relative_yield_H = as.numeric(cultivars$yield_H / yield0)
, relative_yield_L = as.numeric(cultivars$yield_L / yield0)
, relative_yield_I = as.numeric(cultivars$yield_I / yield0)
, relative_yield_R = as.numeric(cultivars$yield_R / yield0)
, sigmoid_kappa_host=0.002, sigmoid_sigma_host=1.001, sigmoid_plateau_host=1
, cultivars_genes_list=list(numeric(0))))
genes <- list(geneName = character(0) , fitness_cost = numeric(0)
, mutation_prob = numeric(0)
, efficiency = numeric(0) , tradeoff_strength = numeric(0)
, Nlevels_aggressiveness = numeric(0)
, time_to_activ_mean = numeric(0) , time_to_activ_var = numeric(0)
, target_trait = character(0)
, recombination_sd = numeric(0))
treatment=list(treatment_degradation_rate=0.1
, treatment_efficiency=0
, treatment_timesteps=logical(0)
, treatment_cultivars=logical(0)
, treatment_cost=0)
## run simulation
model_landsepi(seed=1, time_param = time_param
, basic_patho_param = basic_patho_param
, inits = list(pI0=5E-4), area_vector = area
, dispersal = list(disp_patho_clonal=c(1), disp_patho_sex=c(1), disp_host=c(1))
, rotation_matrix = as.matrix(rotation)
, treatment_param = treatment
, croptypes_cultivars_prop = as.matrix(croptypes_cultivars_prop)
, cultivars_param = cultivars, genes_param = genes)
}
Run the code above in your browser using DataLab