Learn R Programming

languageR (version 1.0)

primingHeid: Primed lexical decision latencies for neologisms ending in -heid

Description

Primed lexical decision latencies for Dutch neologisms ending in the suffix -heid.

Usage

data(primingHeid)

Arguments

References

De Vaan, L., Schreuder, R. and Baayen, R. H. (2007) Regular morphologically complex neologisms leave detectable traces in the mental lexicon, The Mental Lexicon, 2, in press.

Examples

Run this code
data(primingHeid)

library(lme4, keep.source=FALSE)

primingHeid.lmer = lmer(RT ~ RTtoPrime * ResponseToPrime + Condition +
(1|Subject) + (1|Word), data = primingHeid)
pvals.fnc(primingHeid.lmer)$summary

# model criticism

primingHeid.lmer = lmer(RT ~ RTtoPrime * ResponseToPrime + Condition +
(1|Subject) + (1|Word), 
data = primingHeid[abs(scale(resid(primingHeid.lmer)))<2.5,])
pvals.fnc(primingHeid.lmer)$summary

Run the code above in your browser using DataLab