Learn R Programming

languageR (version 1.0)

selfPacedReadingHeid: Self-paced reading latencies for Dutch neologisms

Description

Self-paced reading latencies for Dutch neologisms ending in the suffix -heid.

Usage

data(selfPacedReadingHeid)

Arguments

References

De Vaan, L., Schreuder, R. and Baayen, R. H. (2007) Regular morphologically complex neologisms leave detectable traces in the mental lexicon, The Mental Lexicon, 2, in press.

Examples

Run this code
data(selfPacedReadingHeid)

# data validation
plot(sort(selfPacedReadingHeid$RT))   
selfPacedReadingHeid = selfPacedReadingHeid[selfPacedReadingHeid$RT > 5 & 
  selfPacedReadingHeid$RT < 7.2,]

# fitting a mixed-effects model

library(lme4, keep.source = FALSE)
x = selfPacedReadingHeid[,12:15]
x.pr = prcomp(x, center = TRUE, scale = TRUE)
selfPacedReadingHeid$PC1 = x.pr$x[,1]

selfPacedReadingHeid.lmer = lmer(RT ~ RTtoPrime + LengthInLetters + 
  PC1 * Condition + (1|Subject) + (1|Word), 
  data = selfPacedReadingHeid)  
pvals.fnc(selfPacedReadingHeid.lmer)$summary

# model criticism

selfPacedReadingHeid.lmerA = lmer(RT ~ RTtoPrime + LengthInLetters + 
PC1 * Condition + (1|Subject) + (1|Word), data = 
selfPacedReadingHeid[abs(scale(resid(selfPacedReadingHeid.lmer))) < 2.5, ])

qqnorm(resid(selfPacedReadingHeid.lmerA))

pvals.fnc(selfPacedReadingHeid.lmerA)$summary

Run the code above in your browser using DataLab