Learn R Programming

lares (version 4.7)

mplot_full: MPLOTS Score Full Report Plots

Description

This function plots a whole dashboard with a model's results. It will automatically detect if it's a categorical or regression's model by checking how many different unique values the independent variable (tag) has.

Usage

mplot_full(tag, score, multis = NA, splits = 8, thresh = 6,
  subtitle = NA, model_name = NA, plot = TRUE, save = FALSE,
  subdir = NA, file_name = "viz_full.png")

Arguments

tag

Vector. Real known label

score

Vector. Predicted value or model's result. Must be numeric for categorical binomial models and continuous regression models; must be categorical for multi-categorical models (also need multis param).

multis

Data.frame. Containing columns with each category score (only used when more than 2 categories coexist)

splits

Integer. Numer of separations to plot

thresh

Integer. Threshold for selecting binary or regression models: this number is the threshold of unique values we should have in 'tag' (more than: regression; less than: classification)

subtitle

Character. Subitle to show in plot

model_name

Character. Model's name

plot

Boolean. Plot results? If not, plot grid object returned

save

Boolean. Save output plot into working directory

subdir

Character. Sub directory on which you wish to save the plot

file_name

Character. File name as you wish to save the plot

See Also

Other Machine Learning: ROC, clusterKmeans, conf_mat, export_results, gain_lift, h2o_automl, h2o_predict_API, h2o_predict_MOJO, h2o_predict_binary, h2o_predict_model, h2o_selectmodel, impute, iter_seeds, model_metrics, mplot_conf, mplot_cuts_error, mplot_cuts, mplot_density, mplot_gain, mplot_importance, mplot_lineal, mplot_metrics, mplot_response, mplot_roc, mplot_splits, msplit

Other Visualization: corr_plot, distr, freqs_df, freqs, mplot_conf, mplot_cuts_error, mplot_cuts, mplot_density, mplot_gain, mplot_importance, mplot_lineal, mplot_metrics, mplot_response, mplot_roc, mplot_splits, noPlot, plot_survey, theme_lares2, theme_lares, tree_var