This function plots Variable Importances
mplot_importance(var, imp, colours = NA, limit = 15, model_name = NA,
subtitle = NA, save = FALSE, subdir = NA,
file_name = "viz_importance.png")
Vector. Variable or column's names
Vector. Importance of said variables. Must have same length as var
If possitive and negative contribution is known
Integer. Limit how many variavles you wish to plot
Character. Model's name
Character. Subtitle to show in plot
Boolean. Save output plot into working directory
Character. Sub directory on which you wish to save the plot
Character. File name as you wish to save the plot
Other Machine Learning: ROC
,
clusterKmeans
, conf_mat
,
export_results
, gain_lift
,
h2o_automl
, h2o_predict_API
,
h2o_predict_MOJO
,
h2o_predict_binary
,
h2o_predict_model
,
h2o_selectmodel
, impute
,
iter_seeds
, model_metrics
,
mplot_conf
, mplot_cuts_error
,
mplot_cuts
, mplot_density
,
mplot_full
, mplot_gain
,
mplot_lineal
, mplot_metrics
,
mplot_response
, mplot_roc
,
mplot_splits
, msplit
Other Visualization: corr_plot
,
distr
, freqs_df
,
freqs
, mplot_conf
,
mplot_cuts_error
, mplot_cuts
,
mplot_density
, mplot_full
,
mplot_gain
, mplot_lineal
,
mplot_metrics
,
mplot_response
, mplot_roc
,
mplot_splits
, noPlot
,
plot_survey
, theme_lares2
,
theme_lares
, tree_var