This function plots ROC Curves with AUC values with 95% confidence range. It also works for multi-categorical models.
mplot_roc(tag, score, multis = NA, sample = 1000, model_name = NA,
subtitle = NA, interval = 0.2, plotly = FALSE, save = FALSE,
subdir = NA, file_name = "viz_roc.png")
Vector. Real known label
Vector. Predicted value or model's result
Data.frame. Containing columns with each category score (only used when more than 2 categories coexist)
Integer. Number of samples to use for rendering plot.
Character. Model's name
Character. Subtitle to show in plot
Numeric. Interval for breaks in plot
Boolean. Use plotly for plot's output for an interactive plot
Boolean. Save output plot into working directory
Character. Sub directory on which you wish to save the plot
Character. File name as you wish to save the plot
Other Machine Learning: ROC
,
clusterKmeans
, conf_mat
,
export_results
, gain_lift
,
h2o_automl
, h2o_predict_API
,
h2o_predict_MOJO
,
h2o_predict_binary
,
h2o_predict_model
,
h2o_selectmodel
, impute
,
iter_seeds
, model_metrics
,
mplot_conf
, mplot_cuts_error
,
mplot_cuts
, mplot_density
,
mplot_full
, mplot_gain
,
mplot_importance
,
mplot_lineal
, mplot_metrics
,
mplot_response
, mplot_splits
,
msplit
Other Visualization: corr_plot
,
distr
, freqs_df
,
freqs
, mplot_conf
,
mplot_cuts_error
, mplot_cuts
,
mplot_density
, mplot_full
,
mplot_gain
, mplot_importance
,
mplot_lineal
, mplot_metrics
,
mplot_response
, mplot_splits
,
noPlot
, plot_survey
,
theme_lares2
, theme_lares
,
tree_var