This function plots Variable Importances
mplot_importance(
var,
imp,
colours = NA,
limit = 15,
model_name = NA,
subtitle = NA,
save = FALSE,
subdir = NA,
file_name = "viz_importance.png"
)
Vector. Variable or column's names
Vector. Importance of said variables. Must have same length as var
If positive and negative contribution is known
Integer. Limit how many variables you wish to plot
Character. Model's name
Character. Subtitle to show in plot
Boolean. Save output plot into working directory
Character. Sub directory on which you wish to save the plot
Character. File name as you wish to save the plot
Plot with ranked importance variables results.
Other ML Visualization:
mplot_conf()
,
mplot_cuts_error()
,
mplot_cuts()
,
mplot_density()
,
mplot_full()
,
mplot_gain()
,
mplot_lineal()
,
mplot_metrics()
,
mplot_response()
,
mplot_roc()
,
mplot_splits()
,
mplot_topcats()
# NOT RUN {
Sys.unsetenv("LARES_FONT") # Temporal
df <- data.frame(variable = LETTERS[1:6],
importance = c(4,6,6.7,3,4.8,6.2)/100,
positive = c(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE))
head(df)
mplot_importance(var = df$variable,
imp = df$importance,
model_name = "Random values model")
# Add a colour for categories
mplot_importance(var = df$variable,
imp = df$importance,
colours = df$positive,
limit = 4)
# }
Run the code above in your browser using DataLab