
This function plots a confussion matrix.
mplot_conf(
tag,
score,
thresh = 0.5,
abc = TRUE,
squared = FALSE,
diagonal = TRUE,
top = 20,
subtitle = NA,
model_name = NULL,
save = FALSE,
subdir = NA,
file_name = "viz_conf_mat.png"
)
Vector. Real known label.
Vector. Predicted value or model's result.
Integer. Threshold for selecting binary or regression
models: this number is the threshold of unique values we should
have in 'tag'
(more than: regression; less than: classification)
Boolean. Arrange columns and rows alphabetically?
Boolean. Force plot to be squared?
Boolean. FALSE
to convert diagonal numbers to
zeroes. Ideal to detect must confusing categories.
Integer. Plot only the most n frequent variables.
Set to NA
to plot all.
Character. Subtitle to show in plot
Character. Model's name
Boolean. Save output plot into working directory
Character. Sub directory on which you wish to save the plot
Character. File name as you wish to save the plot
Plot with confusion matrix results.
You may use conf_mat()
to get calculate values.
Other ML Visualization:
mplot_cuts_error()
,
mplot_cuts()
,
mplot_density()
,
mplot_full()
,
mplot_gain()
,
mplot_importance()
,
mplot_lineal()
,
mplot_metrics()
,
mplot_response()
,
mplot_roc()
,
mplot_splits()
,
mplot_topcats()
# NOT RUN {
Sys.unsetenv("LARES_FONT") # Temporal
data(dfr) # Results for AutoML Predictions
lapply(dfr, head)
# Plot for Binomial Model
mplot_conf(dfr$class2$tag, dfr$class2$scores,
model_name = "Titanic Survived Model"
)
# Plot for Multi-Categorical Model
mplot_conf(dfr$class3$tag, dfr$class3$score,
model_name = "Titanic Class Model"
)
# }
Run the code above in your browser using DataLab