
DALEX helper function to create an explainer
object using
a h2o
trained model.
h2o_explainer(df, model, y = "tag", ignore = NULL, ...)
List; explainer. Containing the model, data, y, predict_function, y_hat, residuals, class, label, model_info, residual_function, and weights.
Dataframe. Must contain all columns and predictions
Model object (H2O)
Character or Variable name. Variable's column name.
Character vector. Which columns should be ignored?
Additional parameters to pass to h2o_predict_model
or
h2o_predict_MOJO
.
Other Interpretability:
dalex_local()
,
dalex_residuals()
,
dalex_variable()
# You must have "DALEX" library to use this auxiliary function:
if (FALSE) {
data(dft) # Titanic dataset
# TRAIN A SIMPLE MODEL
dfm <- h2o_automl(dft,
y = "Survived",
ignore = c("Ticket", "PassengerId", "Cabin"),
max_models = 1
)
# EXPLAINER
explainer <- h2o_explainer(df = dfm$datasets$test, model = dfm$model, y = "Survived")
explainer$data <- na.omit(explainer$data)
# CATEGORICAL EXAMPLE
class <- dalex_variable(explainer, vars = c("Pclass", "Sex"))
class$plot
# NUMERICAL EXAMPLE
num <- dalex_variable(explainer, vars = c("Fare", "Age"))
num$plot
# LOCAL EXAMPLE
local <- dalex_local(explainer, row = 1)
# OR YOU COULD MANUALLY INPUT THE OBSERVATION
local <- dalex_local(explainer, observation = explainer$data[1, ])
local$plot
# xai2shiny's UI (needs to be installed from ModelOriented/xai2shiny)
xai2shiny(explainer, run = TRUE)
}
Run the code above in your browser using DataLab