Learn R Programming

⚠️There's a newer version (0.0.7) of this package.Take me there.

latentFactoR (version 0.0.4)

Data Simulation Based on Latent Factors

Description

Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skews, cross-loadings, wording effects, population errors, and local dependencies can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011) .

Copy Link

Version

Install

install.packages('latentFactoR')

Monthly Downloads

260

Version

0.0.4

License

GPL (>= 3.0)

Maintainer

Alexander Christensen

Last Published

November 22nd, 2022

Functions in latentFactoR (0.0.4)

obtain_zipfs_parameters

Obtain Zipf's Distribution Parameters from Data
simulate_factors

Simulates Latent Factor Data
categorize

Categorize Continuous Data
add_local_dependence

Adds Local Dependence to simulate_factors Data
skew_tables

Skew Tables
factor_forest

Estimate Number of Dimensions using Factor Forest
EKC

Estimate Number of Dimensions using Empirical Kaiser Criterion
add_population_error

Adds Population Error to simulate_factors Data
NEST

Estimate Number of Dimensions using Next Eigenvalue Sufficiency Test
data_to_zipfs

Transforms simulate_factors Data to Zipf's Distribution
add_cross_loadings

Adds (Substantial) Cross-loadings to simulate_factors Data
latentFactoR-package

latentFactoR--package
estimate_dimensions

Estimates Dimensions using Several State-of-the-art Methods