powered by
Latent profile analysis or finite Gaussian mixture modeling.
lcMethodMclustLLPA( response, time = getOption("latrend.time"), id = getOption("latrend.id"), nClusters = 2, ... )
The name of the response variable.
The name of the time variable.
The name of the trajectory identifier variable.
The number of clusters to estimate.
Arguments passed to mclust::Mclust. The following external arguments are ignored: data, G, verbose.
scrucca2016mclustlatrend
Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify
lcMethod-class
lcMethodAkmedoids
lcMethodCrimCV
lcMethodCustom
lcMethodDtwclust
lcMethodFeature
lcMethodFunFEM
lcMethodGCKM
lcMethodKML
lcMethodLMKM
lcMethodLcmmGBTM
lcMethodLcmmGMM
lcMethodLongclust
lcMethodMixAK_GLMM
lcMethodMixtoolsGMM
lcMethodMixtoolsNPRM
lcMethodRandom
lcMethodStratify
# NOT RUN { library(mclust) data(latrendData) method <- lcMethodMclustLLPA("Y", id = "Id", time = "Time", nClusters = 3) model <- latrend(method, latrendData) # }
Run the code above in your browser using DataLab