featureBased interface
# S4 method for lcMethodFeature
getName(object)# S4 method for lcMethodFeature
getShortName(object)
# S4 method for lcMethodFeature
prepareData(method, data, verbose, ...)
# S4 method for lcMethodFeature
fit(method, data, envir, verbose, ...)
# S4 method for lcMethodGCKM
getName(object)
# S4 method for lcMethodGCKM
getShortName(object)
# S4 method for lcMethodGCKM
compose(method, envir = NULL)
# S4 method for lcMethodGCKM
preFit(method, data, envir, verbose)
# S4 method for lcMethodGCKM
fit(method, data, envir, verbose, ...)
# S4 method for lcMethodLMKM
getName(object)
# S4 method for lcMethodLMKM
getShortName(object)
# S4 method for lcMethodLMKM
prepareData(method, data, verbose)
# S4 method for lcMethodLMKM
fit(method, data, envir, verbose, ...)
# S4 method for lcMethodStratify
getName(object)
# S4 method for lcMethodStratify
getShortName(object)
# S4 method for lcMethodStratify
compose(method, envir = NULL, ...)
# S4 method for lcMethodStratify
fit(method, data, envir, verbose, ...)
# S4 method for lcModelFeature
getName(object, ...)
# S4 method for lcModelFeature
getShortName(object, ...)
# S4 method for lcModelLMKM
predictForCluster(object, newdata, cluster, what = "mu", ...)
# S3 method for lcModelLMKM
coef(object, ..., cluster = NULL)
# S4 method for lcModelLMKM
converged(object, ...)
# S4 method for lcModelLMKM
postprob(object, ...)
The object to extract the label from.
The lcMethod object.
The data, as a data.frame, on which the model will be trained.
A R.utils::Verbose object indicating the level of verbosity.
Arguments passed on to stats::predict.lm
se.fitA switch indicating if standard errors are required.
scaleScale parameter for std.err. calculation.
dfDegrees of freedom for scale.
intervalType of interval calculation. Can be abbreviated.
levelTolerance/confidence level.
typeType of prediction (response or model term). Can be abbreviated.
termsIf type = "terms", which terms (default is all
terms), a character vector.
na.actionfunction determining what should be done with missing
values in newdata. The default is to predict NA.
pred.varthe variance(s) for future observations to be assumed for prediction intervals. See ‘Details’.
weightsvariance weights for prediction. This can be a numeric
vector or a one-sided model formula. In the latter case, it is
interpreted as an expression evaluated in newdata.
The environment in which the lcMethod should be evaluated
Optional data.frame for which to compute the model predictions. If omitted, the model training data is used.
Cluster trajectory predictions are made when ids are not specified.
The cluster name.
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.