Learn R Programming

latrend (version 1.3.0)

interface-custom: custom interface

Description

custom interface

Usage

# S4 method for lcMethodCustom
getArgumentDefaults(object)

# S4 method for lcMethodCustom getName(object)

# S4 method for lcMethodCustom getShortName(object)

# S4 method for lcMethodCustom prepareData(method, data, verbose)

# S4 method for lcMethodCustom fit(method, data, envir, verbose)

# S4 method for lcModelCustom getName(object, ...)

# S4 method for lcModelCustom getShortName(object, ...)

# S4 method for lcModelCustom converged(object, ...)

# S4 method for lcModelCustom postprob(object, ...)

# S3 method for lcModelCustom predict(object, ..., newdata = NULL, what = "mu")

# S4 method for lcModelCustom predictPostprob(object, newdata = NULL, ...)

# S4 method for lcModelCustom clusterTrajectories(object, at = time(object), ...)

# S4 method for lcModelCustom fittedTrajectories( object, at = time(object), what = "mu", clusters = trajectoryAssignments(object), ... )

# S4 method for lcMethodRandom getArgumentDefaults(object)

# S4 method for lcMethodRandom getName(object)

# S4 method for lcMethodRandom getShortName(object)

# S4 method for lcMethodRandom fit(method, data, envir, verbose, ...)

# S4 method for lcModelPartition clusterTrajectories( object, at = time(object), center = object@center, approxFun = approx, ... )

# S4 method for lcModelPartition converged(object, ...)

# S4 method for lcModelPartition getName(object, ...)

# S4 method for lcModelPartition getShortName(object, ...)

# S4 method for lcModelPartition postprob(object, ...)

# S4 method for lcModelStratify converged(object, ...)

# S4 method for lcModelStratify predictPostprob(object, newdata = NULL, ...)

# S4 method for lcModelWeightedPartition clusterTrajectories( object, at = time(object), center = weighted.meanNA, approxFun = approx, ... )

# S4 method for lcModelWeightedPartition converged(object, ...)

# S4 method for lcModelWeightedPartition getName(object, ...)

# S4 method for lcModelWeightedPartition getShortName(object, ...)

# S4 method for lcModelWeightedPartition postprob(object, ...)

Arguments

object

The lcMethod or lcModel object.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

verbose

A R.utils::Verbose object indicating the level of verbosity.

envir

The environment containing variables generated by prepareData() and preFit().

...

Additional arguments.

newdata

Optional data frame for which to compute the posterior probability. If omitted, the model training data is used.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

at

An optional vector of the times at which to compute the cluster trajectory predictions.

center

The function to use to compute the cluster trajectory center at the respective moment in time.

See Also

lcMethodCustom lcModelCustom lcMethodRandom lcMethodStratify lcModelPartition lcModelWeightedPartition