Returns the observation-specific posterior probabilities for the given data. The default implementation returns a uniform probability matrix.
# S4 method for lcModel
predictPostprob(object, newdata = NULL, ...)
A N-by-K matrix
indicating the posterior probability per trajectory per measurement on each row, for each cluster (the columns).
Here, N = nrow(newdata)
and K = nClusters(object)
.
The lcModel
to predict the posterior probabilities with.
Optional data frame for which to compute the posterior probability. If omitted, the model training data is used.
Additional arguments.
Classes extending lcModel
should override this method to enable posterior probability predictions for new data.
setMethod("predictPostprob", "lcModelExt", function(object, newdata = NULL, ...) {
# return observation-specific posterior probability matrix
})
Other model-specific methods:
clusterTrajectories()
,
coef.lcModel()
,
converged()
,
deviance.lcModel()
,
df.residual.lcModel()
,
fitted.lcModel()
,
fittedTrajectories()
,
lcModel-class
,
logLik.lcModel()
,
model.frame.lcModel()
,
nobs.lcModel()
,
postprob()
,
predict.lcModel()
,
predictAssignments()
,
predictForCluster()
,
residuals.lcModel()
,
sigma.lcModel()
,
time.lcModel()