lvm
-object.## S3 method for class 'lvm':
intercept(object, vars, ...) <- value
lvm
-objectregression
or covariance
methods).lvm
-objectintercept
function is used to specify linear constraints on the
intercept parameters of a latent variable model. As an example we look at
the multivariate regression modeldefined by the call
m <- lvm(c(y1,y2) ~ x)
To fix $\alpha_1=\alpha_2$ we call
intercept(m) <- c(y1,y2) ~ f(mu)
Fixed parameters can be reset by fixing them to NA
. For instance to
free the parameter restriction of $Y_1$ and at the same time fixing
$\alpha_2=2$, we call
intercept(m, ~y1+y2) <- list(NA,2)
Calling intercept
with no additional arguments will return the
current intercept restrictions of the lvm
-object.
covariance<-
, regression<-
,
constrain<-
, parameter<-
,
latent<-
, cancel<-
, kill<-
## A multivariate model
m <- lvm(c(y1,y2) ~ f(x1,beta)+x2)
regression(m) <- y3 ~ f(x1,beta)
intercept(m) <- y1 ~ f(mu)
intercept(m, ~y2+y3) <- list(2,"mu")
intercept(m) ## Examine intercepts of model (NA translates to free/unique paramete##r)
Run the code above in your browser using DataLab