Learn R Programming

lava (version 1.5)

bootstrap.lvm: Calculate bootstrap estimates of a lvm object

Description

Draws non-parametric bootstrap samples

Usage

# S3 method for lvm
bootstrap(x,R=100,data,fun=NULL,control=list(),
                          p, parametric=FALSE, bollenstine=FALSE,
                          constraints=TRUE,sd=FALSE,silent=FALSE,
                          parallel=lava.options()$parallel,
                          mc.cores=NULL,
                          ...)

# S3 method for lvmfit bootstrap(x,R=100,data=model.frame(x), control=list(start=coef(x)), p=coef(x), parametric=FALSE, bollenstine=FALSE, estimator=x$estimator,weights=Weights(x),...)

Arguments

x
lvm-object.
R
Number of bootstrap samples
data
The data to resample from
fun
Optional function of the (bootstrapped) model-fit defining the statistic of interest
control
Options to the optimization routine
p
Parameter vector of the null model for the parametric bootstrap
parametric
If TRUE a parametric bootstrap is calculated. If FALSE a non-parametric (row-sampling) bootstrap is computed.
bollenstine
Bollen-Stine transformation (non-parametric bootstrap) for bootstrap hypothesis testing.
constraints
Logical indicating whether non-linear parameter constraints should be included in the bootstrap procedure
sd
Logical indicating whether standard error estimates should be included in the bootstrap procedure
silent
Suppress messages
parallel
If TRUE parallel backend will be used
mc.cores
Number of threads (if NULL foreach::foreach will be used, otherwise parallel::mclapply)
Additional arguments, e.g. choice of estimator.
estimator
String definining estimator, e.g. 'gaussian' (see estimator)
weights
Optional weights matrix used by estimator

Value

A bootstrap.lvm object.

See Also

confint.lvmfit

Examples

Run this code
m <- lvm(y~x)
d <- sim(m,100)
e <- estimate(y~x, d)
 ## Reduce Ex.Timings
B <- bootstrap(e,R=50,parallel=FALSE)
B

Run the code above in your browser using DataLab