Learn R Programming

lava (version 1.5)

gof: Extract model summaries and GOF statistics for model object

Description

Calculates various GOF statistics for model object including global chi-squared test statistic and AIC. Extract model-specific mean and variance structure, residuals and various predicitions.

Usage

gof(object, ...)

# S3 method for lvmfit gof(object, chisq=FALSE, level=0.90, rmsea.threshold=0.05,all=FALSE,...)

moments(x,...)

# S3 method for lvm moments(x, p, debug=FALSE, conditional=FALSE, data=NULL, latent=FALSE, ...)

# S3 method for lvmfit logLik(object, p=coef(object), data=model.frame(object), model=object$estimator, weights=Weights(object), data2=object$data$data2, ...)

# S3 method for lvmfit score(x, data=model.frame(x), p=pars(x), model=x$estimator, weights=Weights(x), data2=x$data$data2, ...)

# S3 method for lvmfit information(x,p=pars(x),n=x$data$n,data=model.frame(x), model=x$estimator,weights=Weights(x), data2=x$data$data2, ...)

Arguments

object
Model object
Additional arguments to be passed to the low level functions
x
Model object
p
Parameter vector used to calculate statistics
data
Data.frame to use
latent
If TRUE predictions of latent variables are included in output
data2
Optional second data.frame (only for censored observations)
weights
Optional weight matrix
n
Number of observations
conditional
If TRUE the conditional moments given the covariates are calculated. Otherwise the joint moments are calculated
model
String defining estimator, e.g. "gaussian" (see estimate)
debug
Debugging only
chisq
Boolean indicating whether to calculate chi-squared goodness-of-fit (always TRUE for estimator='gaussian')
level
Level of confidence limits for RMSEA
rmsea.threshold
Which probability to calculate, Pr(RMSEA<rmsea.treshold)
all
Calculate all (ad hoc) FIT indices: TLI, CFI, NFI, SRMR, ...

Value

A htest-object.

Examples

Run this code
m <- lvm(list(y~v1+v2+v3+v4,c(v1,v2,v3,v4)~x))
set.seed(1)
dd <- sim(m,1000)
e <- estimate(m, dd)
gof(e,all=TRUE,rmsea.threshold=0.05,level=0.9)


set.seed(1)
m <- lvm(list(c(y1,y2,y3)~u,y1~x)); latent(m) <- ~u
regression(m,c(y2,y3)~u) <- "b"
d <- sim(m,1000)
e <- estimate(m,d)
rsq(e)
##'
rr <- rsq(e,TRUE)
rr
estimate(rr,contrast=rbind(c(1,-1,0),c(1,0,-1),c(0,1,-1)))

Run the code above in your browser using DataLab