Learn R Programming

⚠️There's a newer version (1.8.1) of this package.Take me there.

Latent Variable Models: lava

A general implementation of Structural Equation Models with latent variables (MLE, 2SLS, and composite likelihood estimators) with both continuous, censored, and ordinal outcomes (Holst and Budtz-Joergensen (2013) <10.1007/s00180-012-0344-y>). Mixture latent variable models and non-linear latent variable models (Holst and Budtz-Joergensen (2020) <10.1093/biostatistics/kxy082>). The package also provides methods for graph exploration (d-separation, back-door criterion), simulation of general non-linear latent variable models, and estimation of influence functions for a broad range of statistical models.

Installation

install.packages("lava", dependencies=TRUE)
library("lava")
demo("lava")

For graphical capabilities the Rgraphviz package is needed (first install the BiocManager package)

# install.packages("BiocManager")
BiocManager::install("Rgraphviz")

or the igraph or visNetwork packages

install.packages("igraph")
install.packages("visNetwork")

The development version of lava may also be installed directly from github:

# install.packages("remotes")
remotes::install_github("kkholst/lava")

Citation

To cite that lava package please use one of the following references

Klaus K. Holst and Esben Budtz-Joergensen (2013). Linear Latent Variable Models: The lava-package. Computational Statistics 28 (4), pp 1385-1453. http://dx.doi.org/10.1007/s00180-012-0344-y

@article{lava,
  title = {Linear Latent Variable Models: The lava-package},
  author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
  year = {2013},
  volume = {28},
  number = {4},
  pages = {1385-1452},
  journal = {Computational Statistics},
  doi = {10.1007/s00180-012-0344-y}
}

Klaus K. Holst and Esben Budtz-Jørgensen (2020). A two-stage estimation procedure for non-linear structural equation models. Biostatistics 21 (4), pp 676-691. http://dx.doi.org/10.1093/biostatistics/kxy082

@article{lava_nlin,
  title = {A two-stage estimation procedure for non-linear structural equation models},
  author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
  journal = {Biostatistics},
  year = {2020},
  volume = {21},
  number = {4},
  pages = {676-691},
  doi = {10.1093/biostatistics/kxy082},
}

Examples

Structural Equation Model

Specify structural equation models with two factors

m <- lvm()
regression(m) <- y1 + y2 + y3 ~ eta1
regression(m) <- z1 + z2 + z3 ~ eta2
latent(m) <- ~ eta1 + eta2
regression(m) <- eta2 ~ eta1 + x
regression(m) <- eta1 ~ x

labels(m) <- c(eta1=expression(eta[1]), eta2=expression(eta[2]))
plot(m)

Simulation

d <- sim(m, 100, seed=1)

Estimation

e <- estimate(m, d)
e
#>                     Estimate Std. Error  Z-value   P-value
#> Measurements:                                             
#>    y2~eta1           0.95462    0.08083 11.80993    <1e-12
#>    y3~eta1           0.98476    0.08922 11.03722    <1e-12
#>     z2~eta2          0.97038    0.05368 18.07714    <1e-12
#>     z3~eta2          0.95608    0.05643 16.94182    <1e-12
#> Regressions:                                              
#>    eta1~x            1.24587    0.11486 10.84694    <1e-12
#>     eta2~eta1        0.95608    0.18008  5.30910 1.102e-07
#>     eta2~x           1.11495    0.25228  4.41951 9.893e-06
#> Intercepts:                                               
#>    y2               -0.13896    0.12458 -1.11537    0.2647
#>    y3               -0.07661    0.13869 -0.55241    0.5807
#>    eta1              0.15801    0.12780  1.23644    0.2163
#>    z2               -0.00441    0.14858 -0.02969    0.9763
#>    z3               -0.15900    0.15731 -1.01076    0.3121
#>    eta2             -0.14143    0.18380 -0.76949    0.4416
#> Residual Variances:                                       
#>    y1                0.69684    0.14858  4.69004          
#>    y2                0.89804    0.16630  5.40026          
#>    y3                1.22456    0.21182  5.78109          
#>    eta1              0.93620    0.19623  4.77084          
#>    z1                1.41422    0.26259  5.38570          
#>    z2                0.87569    0.19463  4.49934          
#>    z3                1.18155    0.22640  5.21883          
#>    eta2              1.24430    0.28992  4.29195

Model assessment

Assessing goodness-of-fit, here the linearity between eta2 and eta1 (requires the gof package)

# install.packages("gof", repos="https://kkholst.github.io/r_repo/")
library("gof")
set.seed(1)
g <- cumres(e, eta2 ~ eta1)
plot(g)

Non-linear measurement error model

Simulate non-linear model

m <- lvm(y1 + y2 + y3 ~ u, u ~ x)
transform(m,u2 ~ u) <- function(x) x^2
regression(m) <- z~u2+u

d <- sim(m,200,p=c("z"=-1, "z~u2"=-0.5), seed=1)

Stage 1:

m1 <- lvm(c(y1[0:s], y2[0:s], y3[0:s]) ~ 1*u, u ~ x)
latent(m1) <- ~ u
(e1 <- estimate(m1, d))
#>                     Estimate Std. Error  Z-value  P-value
#> Regressions:                                             
#>    u~x               1.06998    0.08208 13.03542   <1e-12
#> Intercepts:                                              
#>    u                -0.08871    0.08753 -1.01344   0.3108
#> Residual Variances:                                      
#>    y1                1.00054    0.07075 14.14214         
#>    u                 1.19873    0.15503  7.73233

Stage 2

pp <- function(mu,var,data,...) cbind(u=mu[,"u"], u2=mu[,"u"]^2+var["u","u"])
(e <- measurement.error(e1, z~1+x, data=d, predictfun=pp))
#>             Estimate Std.Err    2.5%   97.5%   P-value
#> (Intercept)  -1.1181 0.13795 -1.3885 -0.8477 5.273e-16
#> x            -0.0537 0.13213 -0.3127  0.2053 6.844e-01
#> u             1.0039 0.11504  0.7785  1.2294 2.609e-18
#> u2           -0.4718 0.05213 -0.5740 -0.3697 1.410e-19
f <- function(p) p[1]+p["u"]*u+p["u2"]*u^2
u <- seq(-1, 1, length.out=100)
plot(e, f, data=data.frame(u))

Simulation

Studying the small-sample properties of a mediation analysis

m <- lvm(y~x, c~1)
regression(m) <- y+x ~ z
eventTime(m) <- t~min(y=1, c=0)
transform(m,S~t+status) <- function(x) survival::Surv(x[,1],x[,2])
plot(m)

Simulate from model and estimate indirect effects

onerun <- function(...) {
    d <- sim(m, 100)
    m0 <- lvm(S~x+z, x~z)
    e <- estimate(m0, d, estimator="glm")
    vec(summary(effects(e, S~z))$coef[,1:2])
}
val <- sim(onerun, 100)
summary(val, estimate=1:4, se=5:8, short=TRUE)
#> 100 replications					Time: 3.667s
#> 
#>         Total.Estimate Direct.Estimate Indirect.Estimate S~x~z.Estimate
#> Mean           1.97292         0.96537           1.00755        1.00755
#> SD             0.16900         0.18782           0.15924        0.15924
#> SE             0.18665         0.18090           0.16431        0.16431
#> SE/SD          1.10446         0.96315           1.03183        1.03183
#>                                                                        
#> Min            1.47243         0.54497           0.54554        0.54554
#> 2.5%           1.63496         0.61228           0.64914        0.64914
#> 50%            1.95574         0.97154           0.99120        0.99120
#> 97.5%          2.27887         1.32443           1.27807        1.27807
#> Max            2.45746         1.49491           1.33446        1.33446
#>                                                                        
#> Missing        0.00000         0.00000           0.00000        0.00000

Add additional simulations and visualize results

val <- sim(val,500) ## Add 500 simulations
plot(val, estimate=c("Total.Estimate", "Indirect.Estimate"),
     true=c(2, 1), se=c("Total.Std.Err", "Indirect.Std.Err"),
     scatter.plot=TRUE)

Copy Link

Version

Install

install.packages('lava')

Monthly Downloads

117,538

Version

1.7.1

License

GPL-3

Maintainer

Klaus Holst

Last Published

January 6th, 2023

Functions in lava (1.7.1)

bmidata

Data
baptize

Label elements of object
bootstrap.lvm

Calculate bootstrap estimates of a lvm object
bootstrap

Generic bootstrap method
calcium

Longitudinal Bone Mineral Density Data
children

Extract children or parent elements of object
cancel

Generic cancel method
addvar

Add variable to (model) object
brisa

Simulated data
closed.testing

Closed testing procedure
confband

Add Confidence limits bar to plot
click

Identify points on plot
csplit

Split data into folds
confint.lvmfit

Calculate confidence limits for parameters
compare

Statistical tests
covariance

Add covariance structure to Latent Variable Model
curly

Adds curly brackets to plot
complik

Composite Likelihood for probit latent variable models
devcoords

Returns device-coordinates and plot-region
estimate.lvm

Estimation of parameters in a Latent Variable Model (lvm)
getMplus

Read Mplus output
constrain<-

Add non-linear constraints to latent variable model
fplot

fplot
confpred

Conformal prediction
estimate.default

Estimation of functional of parameters
equivalence

Identify candidates of equivalent models
startvalues

For internal use
getSAS

Read SAS output
diagtest

Calculate diagnostic tests for 2x2 table
dsep.lvm

Check d-separation criterion
gof

Extract model summaries and GOF statistics for model object
images

Organize several image calls (for visualizing categorical data)
iid

Extract i.i.d. decomposition from model object
intervention.lvm

Define intervention
eventTime

Add an observed event time outcome to a latent variable model.
indoorenv

Data
missingdata

Missing data example
measurement.error

Two-stage (non-linear) measurement error
parpos

Generic method for finding indeces of model parameters
partialcor

Calculate partial correlations
ordinal<-

Define variables as ordinal
lvm

Initialize new latent variable model
modelsearch

Model searching
lava-package

Estimation and simulation of latent variable models
lava.options

Set global options for lava
%++%

Concatenation operator
ordreg

Univariate cumulative link regression models
mixture

Estimate mixture latent variable model.
%ni%

Matching operator (x not in y) oposed to the %in%-operator (x in y)
NR

Newton-Raphson method
pcor

Polychoric correlation
path

Extract pathways in model graph
multinomial

Estimate probabilities in contingency table
intercept

Fix mean parameters in 'lvm'-object
predictlvm

Predict function for latent variable models
rbind.Surv

Appending Surv objects
mvnmix

Estimate mixture latent variable model
plotConf

Plot regression lines
sim

Simulate model
sim.default

Monte Carlo simulation
scheffe

Calculate simultaneous confidence limits by Scheffe's method
predict.lvm

Prediction in structural equation models
commutation

Finds the unique commutation matrix
PD

Dose response calculation for binomial regression models
colorbar

Add color-bar to plot
rotate2

Performs a rotation in the plane
semdata

Example SEM data
spaghetti

Spaghetti plot
rmvar

Remove variables from (model) object.
wkm

Weighted K-means
wait

Wait for user input (keyboard or mouse)
timedep

Time-dependent parameters
correlation

Generic method for extracting correlation coefficients of model object
toformula

Converts strings to formula
contr

Create contrast matrix
stack.estimate

Stack estimating equations
makemissing

Create random missing data
nldata

Example data (nonlinear model)
nsem

Example SEM data (nonlinear)
serotonin2

Data
serotonin

Serotonin data
plot.sim

Plot method for simulation 'sim' objects
plot.lvm

Plot path diagram
vec

vec operator
tr

Trace operator
trim

Trim string of (leading/trailing/all) white spaces
vars

Extract variable names from latent variable model
wrapvec

Wrap vector
twostage

Two-stage estimator
zibreg

Regression model for binomial data with unkown group of immortals
ksmooth2

Plot/estimate surface
hubble2

Hubble data
hubble

Hubble data
twindata

Twin menarche data
pdfconvert

Convert pdf to raster format
labels<-

Define labels of graph
plot.estimate

Plot method for 'estimate' objects
regression<-

Add regression association to latent variable model
revdiag

Create/extract 'reverse'-diagonal matrix or off-diagonal elements
summary.sim

Summary method for 'sim' objects
twostageCV

Cross-validated two-stage estimator
twostage.lvmfit

Two-stage estimator (non-linear SEM)
subset.lvm

Extract subset of latent variable model
IC

Extract i.i.d. decomposition (influence function) from model object
Missing

Missing value generator
NA2x

Convert to/from NA
binomial.rd

Define constant risk difference or relative risk association for binary exposure
blockdiag

Combine matrices to block diagonal structure
By

Apply a Function to a Data Frame Split by Factors
Graph

Extract graph
Col

Generate a transparent RGB color
bmd

Longitudinal Bone Mineral Density Data (Wide format)
Model

Extract model
backdoor

Backdoor criterion
Combine

Report estimates across different models
Grep

Finds elements in vector or column-names in data.frame/matrix
Range.lvm

Define range constraints of parameters
Expand

Create a Data Frame from All Combinations of Factors