Learn R Programming

lavaSearch2 (version 1.0.0)

createContrast: Contrast matrix for multiple latent variable models

Description

Returns an empty contrast matrix corresponding to a list of latent variable models.

Usage

createContrast(object, ...)

# S3 method for list createContrast(object, coef.test = NULL, n.test = 0, var.test = NULL, ...)

Arguments

object

a ls.lvmfit object.

...

Only used by the generic method.

coef.test

[optional] the name of the coefficients to be tested. Each coefficient will be tested in a separate hypothesis.

n.test

[optional] the number of linear hypotheses.

var.test

[optional] a string appearing in each coeffcient to be tested.

Examples

Run this code
# NOT RUN {
## Simulate data
mSim <- lvm(X ~ Age + Treatment,
            Y ~ Gender + Treatment,
            c(Z1,Z2,Z3) ~ eta, eta ~ treatment,
            Age[40:5]~1)
latent(mSim) <- ~eta
categorical(mSim, labels = c("placebo","SSRI")) <- ~Treatment
categorical(mSim, labels = c("male","female")) <- ~Gender
n <- 1e2
set.seed(10)
df.data <- sim(mSim,n)

## Estimate separate models
lmX <- estimate(lvm(X ~ -1 + Age + Treatment), data = df.data)
lmY <- estimate(lvm(Y ~ -1 + Gender + Treatment), data = df.data)
lvmZ <- estimate(lvm(c(Z1,Z2,Z3) ~ -1 + 1*eta, eta ~ -1 + Treatment), 
                 data = df.data)

## Contrast matrix for the join model
ls.lvm <- list(X = lmX, Y = lmY, Z = lvmZ)

createContrast(ls.lvm) 
createContrast(ls.lvm, var.test = "Treatment")

# }

Run the code above in your browser using DataLab