# NOT RUN {
set.seed(10)
mSim <- lvm(Y~0.1*X1+0.2*X2)
categorical(mSim, labels = c("a","b","c")) <- ~X1
transform(mSim, Id~Y) <- function(x){1:NROW(x)}
df.data <- lava::sim(mSim, 1e2)
## gold standard
e.lm <- lm(Y~X1+X2, data = df.data)
anova(e.lm)
lTest(e.lm)
## gls model
library(nlme)
e.gls <- gls(Y~X1+X2, data = df.data, method = "ML")
e.gls$dVcov <- dVcov2(e.gls, data = df.data, cluster = df.data$Id)
C <- rbind(c(0,1,0,0,0),c(0,0,1,0,0))
colnames(C) <- names(attr(e.gls$dVcov,"param"))
lTest(e.gls, data = df.data, C = C)
C <- rbind(c(0,0,0,1,0))
colnames(C) <- names(attr(e.gls$dVcov,"param"))
lTest(e.gls, data = df.data, C = C)
## latent variable model
m <- lvm(Y~X1+X2)
e.lvm <- estimate(m, df.data)
e.lvm$dVcov <- dVcov2(e.lvm)
C <- rbind(c(0,0,1,0,0),c(0,0,0,1,0))
colnames(C) <- names(coef(e.lvm))
lTest(e.lvm, C = C)
C <- rbind(c(0,1,0,0,0))
colnames(C) <- names(coef(e.lvm))
lTest(e.lvm, C = C)
# }
Run the code above in your browser using DataLab