# NOT RUN {
#### linear regression ####
set.seed(10)
mSim <- lvm(Y~X1+X2+X3+X4)
addvar(mSim) <- ~Z1+Z2
df.data <- lava::sim(mSim, n = 1e2)
eLM <- lm(Y~X1, data = df.data)
possible.link <- c("Y~X2","Y~X3","Y~X4","Y~Z1","Y~Z2")
res <- modelsearch2(eLM, link = possible.link, data = df.data,
statistic = "LR", method.p.adjust = "holm")
res <- modelsearch2(eLM, link = possible.link, data = df.data,
statistic = "Wald", method.p.adjust = "holm", nStep = 1)
# }
# NOT RUN {
res <- modelsearch2(eLM, data = df.data, link = possible.link)
# }
# NOT RUN {
#### Cox model ####
# }
# NOT RUN {
library(survival)
data(Melanoma, package = "riskRegression")
m <- coxph(Surv(time,status==1)~ici+age, data = Melanoma, x = TRUE, y = TRUE)
res <- modelsearch2(m, link = c(status~epicel,status~sex),
packages = "survival", nStep = 1)
res
# }
# NOT RUN {
#### LVM ####
# }
# NOT RUN {
mSim <- lvm()
regression(mSim) <- c(y1,y2,y3)~u
regression(mSim) <- u~x1+x2
categorical(mSim,labels=c("A","B","C")) <- "x2"
latent(mSim) <- ~u
covariance(mSim) <- y1~y2
transform(mSim, Id~u) <- function(x){1:NROW(x)}
df.data <- lava::sim(mSim, n = 1e2, latent = FALSE)
m <- lvm(c(y1,y2,y3)~u)
latent(m) <- ~u
addvar(m) <- ~x1+x2
e <- estimate(m, df.data)
links <- c(u~x1,u~x2C,y3~x2C)
resScore <- modelsearch2(e, statistic = "score", link = links, method.p.adjust = "holm")
resLR <- modelsearch2(e, statistic = "LR", link = links, method.p.adjust = "holm", nStep = 1)
resMax <- modelsearch2(e, rm.endo_endo = TRUE, statistic = "Wald", link = links, nStep = 1)
resScore <- modelsearch2(e, statistic = "score", method.p.adjust = "holm")
resLR <- modelsearch2(e, statistic = "LR", method.p.adjust = "holm")
resMax <- modelsearch2(e, rm.endo_endo = TRUE, statistic = "Wald")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab