# NOT RUN {
n <- 20
#### glm ####
set.seed(10)
m <- lvm(y~x+z)
distribution(m, ~y+z) <- binomial.lvm("logit")
d <- lava::sim(m,n)
g <- glm(y~x+z,data=d,family="binomial")
iid1 <- iidJack(g, cpus = 1)
iid2 <- lava::iid(g)
quantile(iid1-iid2)
vcov(g)
colSums(iid2^2)
colSums(iid1^2)
#### Cox model ####
library(survival)
data(Melanoma, package = "riskRegression")
m <- coxph(Surv(time,status==1)~ici+age, data = Melanoma, x = TRUE, y = TRUE)
# }
# NOT RUN {
## require riskRegression > 1.4.3
if(utils::packageVersion("riskRegression") > "1.4.3"){
library(riskRegression)
iid1 <- iidJack(m)
iid2 <- iidCox(m)$IFbeta
apply(iid1,2,sd)
print(iid2)
apply(iid2,2,sd)
}
# }
# NOT RUN {
#### LVM ####
set.seed(10)
mSim <- lvm(c(Y1,Y2,Y3,Y4,Y5) ~ 1*eta)
latent(mSim) <- ~eta
categorical(mSim, K=2) <- ~G
transform(mSim, Id ~ eta) <- function(x){1:NROW(x)}
dW <- lava::sim(mSim, n, latent = FALSE)
dL <- reshape2::melt(dW, id.vars = c("G","Id"),
variable.name = "time", value.name = "Y")
dL$time <- gsub("Y","",dL$time)
m1 <- lvm(c(Y1,Y2,Y3,Y4,Y5) ~ 1*eta)
latent(m1) <- ~eta
regression(m1) <- eta ~ G
e <- estimate(m1, data = dW)
# }
# NOT RUN {
iid1 <- iidJack(e)
iid2 <- iid(e)
attr(iid2, "bread") <- NULL
apply(iid1,2,sd)
apply(iid2,2,sd)
quantile(iid2 - iid1)
# }
# NOT RUN {
library(nlme)
e2 <- lme(Y~G+time, random = ~1|Id, weights = varIdent(form =~ 1|Id), data = dL)
e2 <- lme(Y~G, random = ~1|Id, data = dL)
# }
# NOT RUN {
iid3 <- iidJack(e2)
apply(iid3,2,sd)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab