library(mvtnorm)
n <- 350
#### only 2 tests
Sigma <- rbind(c(1,0,0),c(0,1,1),c(0,1,1))
z2 <- qmvnorm(0.95, mean = rep(0,2), sigma = Sigma[1:2,1:2], tail = "both.tails")$quantile
## no selection since strong effect
mu <- c(10,0,0)
calcType1postSelection(0.95, quantile.previous = z2, distribution = "gaussian",
mu = mu, Sigma = Sigma, correct = TRUE)
## strong selection
if (FALSE) {
mu <- c(0,0,0)
levelC <- calcType1postSelection(0.95, quantile.previous = z2, distribution = "gaussian",
mu = mu, Sigma = Sigma)
print(levelC) # more liberal than without selection
calcType1postSelection(levelC, quantile.previous = z2, distribution = "gaussian",
mu = mu, Sigma = Sigma, correct = FALSE)
}
#### 3 tests
Sigma <- diag(1,5,5)
Sigma[4,2] <- 1
Sigma[2,4] <- 1
Sigma[5,3] <- 1
Sigma[3,5] <- 1
z2 <- qmvnorm(0.95, mean = mu[1:3], sigma = Sigma[1:3,1:3], tails = "both.tails")$quantile
## no selection since strong effect
if (FALSE) {
mu <- c(10,0,0,0,0)
calcType1postSelection(0.95, quantile.previous = z2, distribution = "gaussian",
mu = mu, Sigma = Sigma, correct = TRUE)
## strong selection
mu <- c(0,0,0,0,0)
levelC <- calcType1postSelection(0.95, quantile.previous = z2,
mu = mu, Sigma = Sigma, distribution = "gaussian")
calcType1postSelection(levelC, quantile.previous = z2, distribution = "gaussian",
mu = mu, Sigma = Sigma, correct = FALSE)
}
Run the code above in your browser using DataLab