#### regression ####
m <- lvm(Y~X1+X2)
e <- estimate(m, lava::sim(m, 1e2))
coefType(m)
coefType(e)
#### LVM ####
m <- lvm()
regression(m) <- c(y1,y2,y3)~u
regression(m) <- u~x1+x2
latent(m) <- ~u
covariance(m) <- y1~y2
m.Sim <- m
categorical(m.Sim, labels = c("a","b","c")) <- ~x2
e <- estimate(m, lava::sim(m.Sim, 1e2))
coefType(m)
coefType(e)
## additional categorical variables
categorical(m, labels = as.character(1:3)) <- "X1"
coefType(m, as.lava = FALSE)
#### LVM with constrains ####
m <- lvm(c(Y1~0+1*eta1,Y2~0+1*eta1,Y3~0+1*eta1,
Z1~0+1*eta2,Z2~0+1*eta2,Z3~0+1*eta2))
latent(m) <- ~eta1 + eta2
e <- estimate(m, lava::sim(m,1e2))
coefType(m)
coefType(e)
#### multigroup ####
m <- lvm(Y~X1+X2)
eG <- estimate(list(m,m), list(lava::sim(m, 1e2), lava::sim(m, 1e2)))
coefType(eG)
Run the code above in your browser using DataLab