## Simulate data
mSim <- lvm(X ~ Age + Treatment,
Y ~ Gender + Treatment,
c(Z1,Z2,Z3) ~ eta, eta ~ treatment,
Age[40:5]~1)
latent(mSim) <- ~eta
categorical(mSim, labels = c("placebo","SSRI")) <- ~Treatment
categorical(mSim, labels = c("male","female")) <- ~Gender
n <- 1e2
set.seed(10)
df.data <- lava::sim(mSim,n)
## Estimate separate models
lmX <- lava::estimate(lvm(X ~ -1 + Age + Treatment), data = df.data)
lmY <- lava::estimate(lvm(Y ~ -1 + Gender + Treatment), data = df.data)
lvmZ <- lava::estimate(lvm(c(Z1,Z2,Z3) ~ -1 + 1*eta, eta ~ -1 + Treatment),
data = df.data)
## Contrast matrix for a given model
createContrast(lmX, linfct = "X~Age")
createContrast(lmX, linfct = c("X~Age=0","X~Age+5*X~TreatmentSSRI=0"))
createContrast(lmX, linfct = c("X~Age=0","X~Age+5*X~TreatmentSSRI=0"), sep = NULL)
createContrast(lmX, linfct = character(0))
## Contrast matrix for the join model
ls.lvm <- list(X = lmX, Y = lmY, Z = lvmZ)
createContrast(ls.lvm, linfct = "TreatmentSSRI=0")
createContrast(ls.lvm, linfct = "TreatmentSSRI=0", rowname.rhs = FALSE)
createContrast(ls.lvm, linfct = character(0))
## Contrast for multigroup models
m <- lava::lvm(Y~Age+Treatment)
e <- lava::estimate(list(m,m), data = split(df.data, df.data$Gender))
print(coef(e))
createContrast(e, linfct = "Y~TreatmentSSRI@1 - Y~TreatmentSSRI@2 = 0")
createContrast(e, linfct = "Y~TreatmentSSRI@2 - Y~TreatmentSSRI@1 = 0")
Run the code above in your browser using DataLab