## Not run:
# # Simple ANOVA model with 3 groups (N=20 per group) (artifical data)
# set.seed(1234)
# Y <- cbind(c(rnorm(20,0,1), rnorm(20,0.5,1), rnorm(20,1,1)))
# grp <- c(rep("1", 20), rep("2", 20), rep("3", 20))
# Data <- data.frame(Y, grp)
#
# #create model matrix
# fit.lm <- lm(Y ~ grp, data = Data)
# mfit <- fit.lm$model
# mm <- model.matrix(mfit)
#
# Y <- model.response(mfit)
# X <- data.frame(mm[,2:3])
# names(X) <- c("d1", "d2")
# Data.new <- data.frame(Y, X)
#
# # model
# model <- 'Y ~ 1 + a1*d1 + a2*d2'
#
# # fit without constraints
# fit <- sem(model, data = Data.new)
#
# # constraints syntax: mu1 < mu2 < mu3
# constraints <- ' a1 > 0
# a1 < a2 '
#
# # we only generate 10 bootstrap samples in this example; in practice
# # you may wish to use a much higher number, say > 10.000. The double bootstrap
# # is not necessary in case of an univariate ANOVA model.
# example <- InformativeTesting(model = model, data = Data.new,
# start = parTable(fit),
# R = 10L, double.bootstrap = "no",
# constraints = constraints)
# example
# # plot(example)
# ## End(Not run)
Run the code above in your browser using DataLab