# extract information from a parameter table
lav_partable_df(partable, group = NULL)
lav_partable_ndat(partable, group = NULL)
lav_partable_npar(partable)
lav_partable_attributes(partable, pta = NULL)
# generate parameter labels
lav_partable_labels(partable, blocks = "group", group.equal = "", group.partial = "", type = "user")
# generate parameter table for specific models
lav_partable_independence(lavobject = NULL, lavdata = NULL, lavoptions = NULL, lavsamplestats = NULL, sample.cov = NULL, sample.mean = NULL, sample.th = NULL, sample.th.idx = NULL)
lav_partable_unrestricted(lavobject = NULL, lavdata = NULL, lavoptions = NULL, lavsamplestats = NULL, sample.cov = NULL, sample.mean = NULL, sample.slopes = NULL, sample.th = NULL, sample.th.idx = NULL)
lav_partable_from_lm(object, est = FALSE, label = FALSE, as.data.frame. = FALSE)
# complete a parameter table only containing a few columns (lhs,op,rhs)
lav_partable_complete(partable = NULL, start = TRUE)
# merge two parameter tables
lav_partable_merge(pt1 = NULL, pt2 = NULL, remove.duplicated = FALSE, fromLast = FALSE, warn = TRUE)
lavParTable
for more information.conditional.x = TRUE
).
If provided, these values will be used as starting values.lm
.TRUE
, remove duplicated elements
when merging two parameter tables.TRUE
, duplicated elements are considered
from the bottom of the merged parameter table.# generate syntax for an independence model
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939)
lav <- lav_partable_independence(fit)
as.data.frame(lav, stringsAsFactors = FALSE)
# how many free parameters?
lav_partable_npar(lav)
# how many sample statistics?
lav_partable_ndat(lav)
# how many degrees of freedom?
lav_partable_df(lav)
Run the code above in your browser using DataLab