Last chance! 50% off unlimited learning
Sale ends in
Three measures of fit for the pairwise maximum likelihood estimation method that are based on likelihood ratios (LR) are defined:
lavTablesFitCf(object)
lavTablesFitCp(object, alpha = 0.05)
lavTablesFitCm(object)
The nominal level of signifiance of global fit.
The
The
With the
Barendse, M. T., Ligtvoet, R., Timmerman, M. E., & Oort, F. J. (2016). Structural Equation Modeling of Discrete data: Model Fit after Pairwise Maximum Likelihood. Frontiers in psychology, 7, 1-8.
Joreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347-387.
# NOT RUN {
# Data
HS9 <- HolzingerSwineford1939[,c("x1","x2","x3","x4","x5",
"x6","x7","x8","x9")]
HSbinary <- as.data.frame( lapply(HS9, cut, 2, labels=FALSE) )
# Single group example with one latent factor
HS.model <- ' trait =~ x1 + x2 + x3 + x4 '
fit <- cfa(HS.model, data=HSbinary[,1:4], ordered=names(HSbinary[,1:4]),
estimator="PML")
lavTablesFitCm(fit)
lavTablesFitCp(fit)
lavTablesFitCf(fit)
# }
Run the code above in your browser using DataLab