rqq(y, plot.it = TRUE, square.it=TRUE, scale = c("MAD", "J", "classical"), location = c("median", "mean"), line.it = FALSE, line.type = c("45 degrees", "QQ"), col.line = 1, lwd = 1, outliers=FALSE, alpha=0.05, ...)
plot
Gel, Y. R., Miao, W. and Gastwirth, J. L. (2005) The Importance of Checking the Assumptions Underlying Statistical Analysis: Graphical Methods for Assessing Normality, Jurimetrics J. 46, 3-29.
Weisberg, S. (2005) Applied linear regression, 3rd Ed, John Wiley \& Sons, Hoboken, N.J.
rjb.test
, sj.test
, qqnorm
, qqplot
, qqline
## Simulate 100 observations: using rnorm() for
## normally distributed data, Y=N(0,1)
y = rnorm(100)
rqq(y)
## Using michigan data
data(michigan)
rqq(michigan)
Run the code above in your browser using DataLab