# NOT RUN {
# We need the extRemes and distillery packages
got_extRemes <- requireNamespace("extRemes", quietly = TRUE)
got_distillery <- requireNamespace("distillery", quietly = TRUE)
if (got_extRemes & got_distillery) {
library(extRemes)
library(distillery)
# Examples from the extRemes::fevd documentation
data(PORTw)
# GEV
fit0 <- fevd(TMX1, PORTw, units = "deg C", use.phi = TRUE)
adj_fit0 <- alogLik(fit0)
summary(adj_fit0)
# GEV regression
fitPORTstdmax <- fevd(TMX1, PORTw, scale.fun = ~STDTMAX, use.phi = TRUE)
adj_fit1 <- alogLik(fitPORTstdmax)
summary(adj_fit1)
fitPORTstdmax2 <- fevd(TMX1, PORTw, location.fun = ~STDTMAX,
scale.fun = ~STDTMAX, use.phi = TRUE)
adj_fit2 <- alogLik(fitPORTstdmax2)
summary(adj_fit2)
anova(adj_fit0, adj_fit1)
anova(adj_fit1, adj_fit2)
anova(adj_fit0, adj_fit2)
anova(adj_fit0, adj_fit1, adj_fit2)
# Gumbel
fit0 <- fevd(TMX1, PORTw, type = "Gumbel", units = "deg C")
adj_fit0 <- alogLik(fit0)
summary(adj_fit0)
# GP
data(damage)
fit1 <- fevd(Dam, damage, threshold = 6, type = "GP",
time.units = "2.05/year")
adj_fit1 <- alogLik(fit1)
summary(adj_fit1)
# Exponential
fit0 <- fevd(Dam, damage, threshold = 6, type="Exponential",
time.units = "2.05/year")
adj_fit0 <- alogLik(fit0)
summary(adj_fit0)
# GP non-constant threshold
data(Fort)
fit <- fevd(Prec, Fort, threshold = 0.475,
threshold.fun = ~I(-0.15 * cos(2 * pi * month / 12)),
type = "GP")
adj_fit <- alogLik(fit)
summary(adj_fit)
# Exponential non-constant threshold
fit <- fevd(Prec, Fort, threshold = 0.475,
threshold.fun = ~I(-0.15 * cos(2 * pi * month / 12)),
type = "Exponential")
adj_fit <- alogLik(fit)
summary(adj_fit)
# PP model
fit <- fevd(Prec, Fort, threshold = 0.475, type = "PP", units = "inches")
adj_fit <- alogLik(fit)
summary(adj_fit)
# PP non-constant threshold
fit <- fevd(Prec, Fort, threshold = 0.475,
threshold.fun=~I(-0.15 * cos(2 * pi * month / 12)),
type = "PP")
adj_fit <- alogLik(fit)
summary(adj_fit)
}
# }
Run the code above in your browser using DataLab