# NOT RUN {
# We need the mev package
got_mev <- requireNamespace("mev", quietly = TRUE)
if (got_mev) {
library(mev)
# An example from the mev::gev.fit documentation
gev_mev <- fit.gev(revdbayes::portpirie)
adj_gev_mev <- alogLik(gev_mev)
summary(adj_gev_mev)
# Use simulated data
set.seed(1112019)
x <- revdbayes::rgp(365 * 10, loc = 0, scale = 1, shape = 0.1)
pfit <- fit.pp(x, threshold = 1, npp = 365)
# (To do: delete the next two lines after new mev hits CRAN)
pfit$xdat <- x
pfit$npp <- 365
adj_pfit <- alogLik(pfit)
summary(adj_pfit)
# An example from the mev::fit.gpd documentation
gpd_mev <- fit.gpd(eskrain, threshold = 35, method = 'Grimshaw')
adj_gpd_mev <- alogLik(gpd_mev)
summary(adj_gpd_mev)
# An example from the mev::fit.egp documentation
# (model = "egp1" and model = "egp3" also work)
xdat <- evd::rgpd(n = 100, loc = 0, scale = 1, shape = 0.5)
fitted <- fit.egp(xdat = xdat, thresh = 1, model = "egp2", show = FALSE)
adj_fitted <- alogLik(fitted)
summary(adj_fitted)
# An example from the mev::fit.rlarg documentation
set.seed(31102019)
xdat <- rrlarg(n = 10, loc = 0, scale = 1, shape = 0.1, r = 4)
fitr <- fit.rlarg(xdat)
adj_fitr <- alogLik(fitr)
summary(adj_fitr)
}
# }
Run the code above in your browser using DataLab