This function is supposed to run on a weekly basis. Purpose of this function is to perform RL and trading simulation and find out the best possible control parameters for the RL function.
rl_write_control_parameters_mt(
x,
path_control_files,
num_trades_to_consider = 100
)
Function writes best control parameters to be used by the Reinforcement Learning Function
dataset containing the trading results for one trading robot
path where control parameters will be saved
number of last trades to use for RL modeling simulations, default value 100
(C) 2019, 2021 Vladimir Zhbanko
Function is used by the R script Adapt_RL_MT_control.R
# \donttest{
# test lasts 15 sec:
dir <- normalizePath(tempdir(),winslash = "/")
library(dplyr)
library(readr)
library(ReinforcementLearning)
library(magrittr)
library(lazytrade)
data(trading_systemDF)
# use optimal control parameters found by auxiliary function
rl_write_control_parameters_mt(x = trading_systemDF,
path_control_files = dir,
num_trades_to_consider = 100)
# }
Run the code above in your browser using DataLab