# \donttest{
library(dplyr)
library(magrittr)
library(readr)
library(h2o)
library(lazytrade)
library(lubridate)
path_model <- normalizePath(tempdir(),winslash = "/")
path_data <- normalizePath(tempdir(),winslash = "/")
ind = system.file("extdata", "AI_RSIADXUSDJPY60.csv",
package = "lazytrade") %>% read_csv(col_names = FALSE)
ind$X1 <- ymd_hms(ind$X1)
tick = system.file("extdata", "TickSize_AI_RSIADX.csv",
package = "lazytrade") %>% read_csv(col_names = FALSE)
write_csv(ind, file.path(path_data, "AI_RSIADXUSDJPY60.csv"), col_names = FALSE)
write_csv(tick, file.path(path_data, "TickSize_AI_RSIADX.csv"), col_names = FALSE)
# data transformation using the custom function for one symbol
aml_collect_data(indicator_dataset = ind,
symbol = 'USDJPY',
timeframe = 60,
path_data = path_data)
# start h2o engine
h2o.init(nthreads = 2)
# performing Deep Learning Regression using the custom function
aml_make_model(symbol = 'USDJPY',
timeframe = 60,
path_model = path_model,
path_data = path_data,
force_update=FALSE,
num_nn_options = 3)
path_sbxm <- normalizePath(tempdir(),winslash = "/")
path_sbxs <- normalizePath(tempdir(),winslash = "/")
# score the latest data to generate predictions for one currency pair
aml_score_data(symbol = 'USDJPY',
timeframe = 60,
path_model = path_model,
path_data = path_data,
path_sbxm = path_sbxm,
path_sbxs = path_sbxs)
# test the results of predictions
aml_test_model(symbol = 'USDJPY',
num_bars = 600,
timeframe = 60,
path_model = path_model,
path_data = path_data,
path_sbxm = path_sbxm,
path_sbxs = path_sbxs)
# stop h2o engine
h2o.shutdown(prompt = FALSE)
#set delay to insure h2o unit closes properly before the next test
Sys.sleep(5)
# }
Run the code above in your browser using DataLab