data('votB')
# Using LS method (default) without constraint
# K = 2
ex1 <- lba(parties ~ city,
votB,
K = 2)
gx1 <- goodnessfit(ex1)
gx1
# Using MLE method without constraint
# K = 2
exm <- lba(parties ~ city,
votB,
K = 2,
method='mle')
gxm <- goodnessfit(exm)
gxm
# Using LS method (default) with LOGIT constrain
data('housing')
# Make cross-table to matrix design.
tbh <- xtabs(value ~ Influence + Housing, housing)
Xis <- model.matrix(~ Housing*Influence,
tbh,
contrasts=list(Housing='contr.sum',
Influence='contr.sum'))
tby <- xtabs(value ~ Satisfaction + Contact, housing)
Yis <- model.matrix(~ Satisfaction*Contact,
tby,
contrasts=list(Satisfaction='contr.sum',
Contact='contr.sum'))[,-1]
S <- 12
T <- 5
tabs <- xtabs(value ~ interaction(Housing,
Influence) + interaction(Satisfaction,
Contact),
housing)
if (FALSE) {
ex2 <- lba(tabs,
K = 2,
logitA = Xis,
logitB = Yis,
S = S,
T = T,
trace.lba=FALSE)
gex2 <- goodnessfit(ex2)
gex2
}
Run the code above in your browser using DataLab