Learn R Programming

lcmm (version 1.7.3.0)

plot.predict: Plot of predicted trajectories and link functions

Description

This function provides the class-specific predicted trajectories stemmed from a hlme, lcmm, multlcmm or Jointlcmm object.

Usage

## S3 method for class 'predictL':
plot(x,legend.loc="topright",legend,add=FALSE,...)
## S3 method for class 'predictY':
plot(x,outcome=1,legend.loc="topright",legend,add=FALSE,...)
## S3 method for class 'predictlink':
plot(x,legend.loc="topleft",legend,add=FALSE,...)

Arguments

x
an object inheriting from classes predictL, predictY or predictlink representing respectively the predicted marginal mean trajectory of the latent process, the predicted marginal mean trajectory of the longitudinal o
outcome
for predictY and multivariate model fitted with multlcmm only, the outcome to consider.
legend.loc
keyword for the position of the legend from the list "bottomright", "bottom", "bottomleft", "left", "topleft","top", "topright", "right" and "cen
legend
character or expression to appear in the legend. If no legend should be added, "legend" should be NULL.
add
logical indicating if the curves should be added to an existing plot. Default to FALSE.
...
other parameters to be passed through to plotting functions or to legend

See Also

hlme, lcmm, Jointlcmm, multlcmm

Examples

Run this code
################# Prediction from linear latent class model
data(data_hlme)
## fitted model
m<-lcmm(Y~Time*X1,mixture=~Time,random=~Time,classmb=~X2+X3,
subject='ID',ng=2,data=data_hlme,B=c(0.41,0.55,-0.18,-0.41,
-14.26,-0.34,1.33,13.51,24.65,2.98,1.18,26.26,0.97))
## newdata for predictions plot
newdata<-data.frame(Time=seq(0,5,length=100),
X1=rep(0,100),X2=rep(0,100),X3=rep(0,100))
plot(predictL(m,newdata,var.time="Time"),legend.loc="right",bty="l")
## data from the first subject for predictions plot
firstdata<-data_hlme[1:3,]
plot(predictL(m,firstdata,var.time="Time"),legend.loc="right",bty="l")

 ################# Prediction from a joint latent class model
data(data_Jointlcmm)
## fitted model - see help of Jointlcmm function for details on the model
m3 <- Jointlcmm(fixed= Ydep1~Time*X1,mixture=~Time,random=~Time,
classmb=~X3,subject='ID',survival = Surv(Tevent,Event)~X1+mixture(X2),
hazard="3-quant-splines",hazardtype="PH",ng=3,data=data_Jointlcmm,
B=c(0.7576, 0.4095, -0.8232, -0.2737, 0, 0, 0, 0.2838, -0.6338, 
2.6324, 5.3963, -0.0273, 1.398, 0.8168, -15.041, 10.164, 10.2394, 
11.5109, -2.6219, -0.4553, -0.6055, 1.473, -0.0383, 0.8512, 0.0389, 
0.2624, 1.4982))
# class-specific predicted trajectories 
#(with characteristics of subject ID=193)
data <- data_Jointlcmm[data_Jointlcmm$ID==193,]
plot(predictY(m3,newdata=data,var.time="Time"),bty="l")

Run the code above in your browser using DataLab